Phase velocities of Love waves from five major earthquakes are measured over six great circle paths in the period range of 50 to 400 seconds. For two of the great circle paths the phase velocities of Rayleigh waves are also obtained. The digitized seismograph traces are Fourier analyzed, and the phase spectra are used in determining the phase velocities. Where the great circle paths are close, the phase velocities over these paths are found to be in very good agreement with each other indicating that the measured velocities are accurate and reliable. Phase velocities of Love waves over paths that lie far from each other are different, and this difference is consistent and much greater than the experimental error. From this it is concluded that there are lateral variations in the structure of the earth's mantle. One interpretation of this variation is that the mantle under the continents is different from that under the oceans, since the path with the highest phase velocities is almost completely oceanic. This interpretation, however, is not unique and variations under the oceans and continents are also possible.

Group velocities are computed from the phase velocities and are also directly measured from the seismograms. The group-velocity curve of Love waves has a plateau between periods of 100 and 300 seconds with a shallow minimum at about 290 seconds. The sources of error in both Fourier analysis and direct time domain methods of phase velocity measurement are discussed.

First Page Preview

First page PDF preview
You do not currently have access to this article.