We propose an alternative procedure for the capture of the hard‐rock regional kappa (κ0ref). In our approach, we make use of a potential link between the well‐known κ parameter and the properties of coda waves. In our analysis, we consider near‐distance records of four crustal earthquakes of local magnitude 3.7–4.9 that occurred in four regions of France in different geological contexts: the crystalline axial chain of Pyrenees to the southwest, the large sedimentary basin to the southeast, the Alpine range to the east, and the extensional Rhine graben to the northeast. Each earthquake has been recorded at a pair of nearby soft‐ and hard‐rock station sites. The high‐frequency (16–32 Hz) spectral amplitudes of the coda window (carefully selected on the time series of the accelerograms) confirm an exponential decrease, which we quantify by κAHcoda and call “kappa of coda.” It is found that κAHcoda is independent of the soil type but shows significant regional variations. κ measurements (Anderson and Hough, 1984) over the coda window (κAHcoda) and full time series (κAH) show strong correlation at hard‐rock sites. This suggests that κAHcoda can provide a new proxy to estimate the regional hard rock κ0ref (Ktenidou et al., 2015). Theoretical analysis is also presented to relate the regional κAHcoda and coda quality factor Qc, which quantifies the average attenuation properties of the crust (both scattering and absorption). It allows interpreting κAHcoda as the time spent by the waves in the medium, weighted by its attenuation properties. This theoretical analysis also shows that the classical κ measurement should be frequency dependent; this was confirmed by the spectra of the observed records.

You do not currently have access to this article.