ABSTRACT
Afterslip could help to reveal seismogenic fault structure. The 2020 6.3 Nima earthquake happened in a pull‐apart basin within the Qiangtang block, central Tibetan plateau. Previous studies have explained the coseismic and early (<6 mo) postseismic deformation by rupture and afterslip on a normal fault bounding the western side of the basin. Here, we resolved the 19‐month Interferometric Synthetic Aperture Radar‐measured sequences of postseismic displacements that revealed a second postseismic displacement center ~12 km to the east of the main fault. Fitting the postseismic displacement requires afterslip on both the main fault and an antithetic fault that probably forms a y‐shaped pair of conjugate faults in a negative flower structure. Stress‐driven afterslip models suggest that the required afterslip on the antithetic fault could be triggered by coseismic rupture of the main fault or by a simultaneous rupture on the antithetic fault. The afterslip on both faults occurred mainly up‐dip to the coseismic slip and has released moment ~15%–19% of that by the coseismic rupture. These results provide insights into active extension in the central Tibetan plateau and highlight the complex nature of fault rupture and afterslip.