Complex seismic velocity structure near the earthquake source can affect rupture dynamics and strongly modify the seismic waveforms recorded near the fault. Fault‐zone waves are commonly observed in continental crustal settings but are less clear in subduction zones due to the spatial separation between seismic stations and the plate boundary fault. We observed anomalously long duration S waves from earthquake clusters located near the interface of the subducted Gorda plate north of the Mendocino triple junction. In contrast, earthquakes located just a few kilometers below each cluster show impulsive S waves. A nodal array experiment was conducted around the Northern California Seismic Network station KCT for two months to investigate the origin of the complex S waves. Beamforming analysis shows that the S waves contain three arrivals that have different horizontal slownesses, which we term S1, S2, and S coda. Similar analysis on P waves also show two arrivals with different horizontal slownesses, which we term P1 and P2. P1 and S1 have larger horizontal slowness than P2 and S2, respectively, indicating that the phase pairs are body waves with different ray paths. Building upon a seismic refraction profile, we construct 1D velocity models and test different thicknesses and VP/VS ratios for the subducted oceanic crust. The arrival times and relative slownesses of P1/P2 and S1/S2 phases indicate that they are the direct and the Moho reflected phases, respectively. Their properties are consistent with a crustal thickness of ∼6 km and a moderate VP/VS ratio (∼1.8). The S coda is more difficult to characterize but has a clear dominant frequency that likely reflects the near‐source velocity and attenuation structure. Our study indicates that waveforms from earthquakes near the interface of the subducted slab can be used to infer detailed structural information about the plate‐boundary zone at seismogenic depths.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.