Abstract

The quality of automatic signal detections from sensor networks depends on individual detector trigger levels (TLs) from each sensor. The largely manual process of identifying effective TLs is painstaking and does not guarantee optimal configuration settings, yet achieving superior automatic detection of signals and ultimately, events, is closely related to these parameters. We present a Dynamic Detector Tuning (DDT) system that automatically adjusts effective TL settings for signal detectors to the current state of the environment by leveraging cooperation within a local neighborhood of network sensors. After a stabilization period, the DDT algorithm can adapt in near‐real time to changing conditions and automatically tune a signal detector to identify (detect) signals from only events of interest. Our current work focuses on reducing false signal detections early in the seismic signal processing pipeline, which leads to fewer false events and has a significant impact on reducing analyst time and effort. This system provides an important new method to automatically tune detector TLs for a network of sensors and is applicable to both existing sensor performance boosting and new sensor deployment. With ground truth on detections from a local neighborhood of seismic sensors within a network monitoring the Mount Erebus volcano in Antarctica, we show that DDT reduces the number of false detections by 18% and the number of missed detections by 11% when compared with optimal fixed TLs for all sensors.

You do not currently have access to this article.