The seismic response of active and intermittently active landslides is an important issue to resolve to determine if such landslides present an elevated hazard in future earthquakes. To study the response of landslide deposits, seismographs were placed on the Mission Peak landslide in the eastern San Francisco Bay region for a period of one year. Numerous local and near‐regional earthquakes were recorded that reveal a complexity of seismic response phenomena using the horizontal‐to‐vertical spectral ratio method. At lower frequencies, a clear spectral peak is observed at 0.5 Hz common to all four stations in the array and is attributed to a surface topographic effect. At higher frequencies, other spectral peaks occur that are interpreted in terms of local deposits and structures. Site amplification from the standard reference site method shows the minimum amplification with a factor of 2, comparing a site on and off the landslide. A site located on relatively homogeneous deposits of loose soils shows a clear spectral peak associated with the thickness of the deposit. Another site on a talus‐filled graben near the headscarp shows possible 2D or 3D effects from subsurface topography or scattering within and between buried sandstone blocks. A third site on a massive partially detached block below the crown of the headscarp shows indications of resonance caused by the reverberation of shear waves within the block. The varied seismic response of different parts of this complex landslide is consistent with other studies which found that, although landslide response is commonly enhanced in the downslope direction of landslide movement, such a response does not occur uniformly or consistently. When it does occur, enhanced site response parallel to the direction of landslide movement would contribute to landslide reactivation during significant earthquakes.

You do not currently have access to this article.