Abstract

Adjustment factors are provided for converting ground‐motion intensity measures between central and eastern North America (CENA) sites with different reference‐rock site conditions (VS30=760, 2000, and 3000  m/s) for moment magnitudes ranging from 2 to 8, rupture distances ranging from 2 to 1200 km, Fourier amplitude spectra (FAS) for frequencies ranging from 0.01 to 100 Hz, response spectra for periods ranging from 0.01 to 10.0 s, peak ground acceleration, and peak ground velocity. The adjustment factors are given for a wide range of the site diminution parameters (κ0) for sites with VS30=760  m/s and for a κ0 of 0.006 s for two harder rock sites. Fourteen CENA velocity profiles with VS30 values within a factor of 1.1 of 760  m/s were used to derive average FAS amplification factors as a function of frequency, which were then used in simulations of peak ground‐motion parameters and response spectra to derive the adjustment factors. The amplification function differs from that used in western North America (e.g., Campbell and Boore, 2016) in having a peak near 9 Hz, due to the resonance of motions in the relatively thin low‐velocity material over hard rock that characterizes many CENA sites with VS30 near 760  m/s. We call these B/C sites, because this velocity marks the boundary between National Earthquake Hazards Reduction Program site classes B and C (Building Seismic Safety Council, 2004). The adjustments for short‐period motions are sensitive to the value of κ0, but there are very few if any determinations of κ0 for CENA B/C sites. For this reason, we determined κ0 from multiple recordings at Pinyon Flat Observatory (PFO), California, which has a velocity‐depth profile similar to those of CENA B/C sites. The PFO and other results from the literature suggest that appropriate values of κ0 for CENA B/C sites are expected to lie between 0.01 and 0.03 s.

Electronic Supplement:Zip files with parameters used by Stochastic‐Method SIMulation (SMSIM) and ratios of the ground‐motion intensity measures between hard‐rock sites and National Earthquake Hazards Reduction Program (NEHRP) B/C sites.

You do not currently have access to this article.