Probabilistic seismic‐hazard assessment (PSHA) requires an estimate of Mmax, the moment magnitude M of the largest earthquake that could occur within a specified area. Sparse seismicity hinders Mmax estimation in the central and eastern United States (CEUS) and tectonically similar regions worldwide (stable continental regions [SCRs]). A new global catalog of moderate‐to‐large SCR earthquakes is analyzed with minimal assumptions about enigmatic geologic controls on SCRMmax. An earlier observation that SCR earthquakes of M 7.0 and larger occur in young (250–23 Ma) passive continental margins and associated rifts but not in cratons is not strongly supported by the new catalog. SCR earthquakes of M 7.5 and larger are slightly more numerous and reach slightly higher M in young passive margins and rifts than in cratons. However, overall histograms of M from young margins and rifts and from cratons are statistically indistinguishable. This conclusion is robust under uncertainties in M, the locations of SCR boundaries, and which of two available global SCR catalogs is used. The conclusion stems largely from recent findings that (1) large southeast Asian earthquakes once thought to be SCR were in actively deforming crust and (2) long escarpments in cratonic Australia were formed by prehistoric faulting. The 2014 seismic‐hazard model of the U.S. Geological Survey represents CEUSMmax as four‐point probability distributions. The distributions have weighted averages of M 7.0 in cratons and M 7.4 in passive margins and rifts. These weighted averages are consistent with Mmax estimates of other SCRPSHAs of the CEUS, southeastern Canada, Australia, and India.

You do not currently have access to this article.