We investigate the influence of building height on the ability of people to feel earthquakes and observe that, in an urban area, short and tall buildings reach different levels of excitation. We quantify this behavior by analyzing macroseismic reports collected from individuals through the Internet; we focus on elastic regime transitory effects of recent earthquakes in Italy in the local magnitude (ML) range of 3–5.9. We find a maximum difference of 0.6 intensity units between the top floors of tall (7–10 stories) and short (1–2 stories) buildings at the highest considered magnitudes. As expected, tall buildings experience greater shaking than short buildings during large earthquakes at large source distances. However, we observe the opposite behavior at close distances when the ML is <3.5. These results can be explained by considering the different spectra radiated by small and large earthquakes and the different fundamental mode resonances of buildings (i.e., shorter buildings have higher resonance frequencies and vice versa). Using idealized building models excited by real acceleration time histories, we compute synthetic accelerograms on the top floors of short and tall buildings and confirm the trend of the observed differences in felt intensities.

You do not currently have access to this article.