The 28 October 2012 Mw 7.8 Haida Gwaii earthquake was a megathrust earthquake along the very obliquely convergent Queen Charlotte margin of British Columbia, Canada. Coseismic deformation is not well constrained by geodesy, with only six Global Positioning System (GPS) sites and two tide gauge stations within 250 km of the rupture area. To better constrain vertical coseismic deformation, we measured the upper growth limits of two sessile intertidal organisms, which are controlled by physical conditions, relative to sea level at 25 sites 5 months after the earthquake. We measured the positions of rockweed (Fucus distichus, 617 observations) and the common acorn barnacle (Balanus balanoides, 686 observations). The study focused on the western side of the islands where rupture models indicated that the greatest amount of vertical displacement, but we also investigated sites well away from the inferred rupture area to provide a control on the upper limit of the organisms unaffected by vertical displacement. We also made 322 measurements of sea level to relate the growth limits to a tidal datum using the TPXO7.2 tidal model, rather than ellipsoid heights determined by GPS. Three methods of examining the data all indicate 0.4–0.6 m subsidence along the western coast of Moresby Island as a result of the 28 October 2012 Haida Gwaii earthquake. Our data are, within the errors, consistent with data from two campaign GPS sites along the west coast of Haida Gwaii and with rupture models that indicate megathrust rupture offshore, but not beneath, the islands.

You do not currently have access to this article.