Abstract

The Maacama fault is the northward continuation of the Hayward–Rodgers Creek fault system and creeps at a rate of 5.7±0.1  mm/yr (averaged over the last 20 years) in Willits, California. Our paleoseismic studies at Haehl Creek suggest that the Maacama fault has produced infrequent large earthquakes in addition to creep. Fault terminations observed in several excavations provide evidence that a prehistoric surface‐rupturing earthquake occurred between 1060 and 1180 calibrated years (cal) B.P. at the Haehl Creek site. A folding event, which we attribute to a more recent large earthquake, occurred between 790 and 1060 cal B.P. In the last 560–690 years, a buried channel deposit has been offset 4.6±0.2  m, giving an average slip rate of 6.4–8.6  mm/yr, which is higher than the creep rate over the last 20 years. The difference between this slip rate and the creep rate suggests that coseismic slip up to 1.7 m could have occurred after the formation of the channel deposit and could be due to a paleoearthquake known from paleoseismic studies in the Ukiah Valley, about 25 km to the southeast. Therefore, we infer that at least two, and possibly three, large earthquakes have occurred at the Haehl Creek site since 1180 cal B.P. (770 C.E.), consistent with earlier studies suggesting infrequent, large earthquakes on the Maacama fault. The short‐term geodetic slip rate across the Maacama fault zone is approximately twice the slip rate that we have documented at the Haehl Creek site, which is averaged over the last approximately 600 years. If the geodetic rate represents the long‐term slip accumulation across the fault zone, then we infer that, in the last ∼1200 years, additional earthquakes may have occurred either on the Haehl Creek segment of the Maacama fault or on other active faults within the Maacama fault zone at this latitude.

Online Material: Trench logs, discussion of channel B, photographs of compressional features, and table of radiocarbon analyses.

You do not currently have access to this article.