Abstract

The Sacramento–San Joaquin Delta is an inland delta at the western extent of the Central Valley. Levees were built around swampy islands starting after the Civil War to reclaim these lands for farming. Various studies show that these levees could fail in concert from shaking from a major local or regional earthquake resulting in salty water from the San Francisco Bay contaminating the water in the Delta. We installed seismographs around the Delta and on levees to assess the contribution of site response to the seismic hazard of the levees. Cone penetrometer testing shows that the upper 10 s of meters of soil in the Delta have shear‐wave velocities of about 200  m/s, which would give a strong site response. Seismographs were sited following two strategies: pairs of stations to compare the response of the levees to nearby sites, and a more regional deployment in the Delta. Site response was determined in two different ways: a traditional spectral ratio (TSR) approach of S waves using station BDM of the Berkeley Digital Seismic Net as a reference site, and using SH/SV ratios of noise (or Nakamura’s method). Both estimates usually agree in spectral character for stations whose response is dominated by a resonant peak, but the most obvious peaks in the SH/SV ratios usually are about two‐thirds as large as the main peaks in the TSRs. Levee sites typically have large narrow resonances in the site response function compared to sites in the farmland of the Delta. These resonances, at a frequency of about 1–3 Hz, have amplitudes of about 15 with TSR and 10–12 with Nakamura’s method. Sites on farmland in the Delta also have amplifications, but these are typically broader and not as resonant in appearance. Late (slow) Rayleigh waves were recorded at stations in the Delta, have a dominant period of about one second, and are highly monochromatic. Results from a three‐station array at the Holland Marina suggest that they have a phase velocity of about 600  m/s and arrive at about the same azimuth as the straight‐line back azimuth to the source. A dispersion curve determined for the basin or valley waves yields a shallow velocity profile that increases from about 350  m/s in the upper 0.2 km to about 1.1  km/s at a depth of about 2 km.

You do not currently have access to this article.