With the implementation of the USGS National Earthquake Information Center Prompt Assessment of Global Earthquakes for Response system (PAGER), rapid determination of earthquake moment magnitude is essential, especially for earthquakes that are felt within the contiguous United States. We report an implementation of moment tensor processing for application to broad, seismically active areas of North America. This effort focuses on the selection of regional crustal velocity models, codification of data quality tests, and the development of procedures for rapid computation of the seismic moment tensor. We systematically apply these techniques to earthquakes with reported magnitude greater than 3.5 in continental North America that are not associated with a tectonic plate boundary.

Using the 0.02–0.10 Hz passband, we can usually determine, with few exceptions, moment tensor solutions for earthquakes with Mw as small as 3.7. The threshold is significantly influenced by the density of stations, the location of the earthquake relative to the seismic stations and, of course, the signal-to-noise ratio. With the existing permanent broadband stations in North America operated for rapid earthquake response, the seismic moment tensor of most earthquakes that are Mw 4 or larger can be routinely computed. As expected the nonuniform spatial pattern of these solutions reflects the seismicity pattern. However, the orientation of the direction of maximum compressive stress and the predominant style of faulting is spatially coherent across large regions of the continent.

You do not currently have access to this article.