Issues

OPINION
Integrate Urban‐Scale Seismic Hazard Analyses with the U.S. National Seismic Hazard Model
NEWS AND NOTES
FOCUS SECTION
ARTICLES
2018 One‐Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes
ELECTRONIC SEISMOLOGIST
A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes
COMMUNICATING SCIENCE
EDUQUAKES
EASTERN SECTION
MEETING CALENDAR
-
Cover Image
Cover Image
Front: Scientists in China have made tremendous efforts to use large-volume airguns to create a repeatable and powerful source for imaging subsurface structures and monitoring temporal changes of seismic velocities. The two top panels show similar seismic profiles, one from a chemical explosion and another from stacked airgun shots. The photo was taken immediately following an airgun shot in Yunnan province, Southwest China, and shows air bubbles that have risen to the surface. These results and more are described in detail in the six articles included in the SRL Focus Section on Nonexplosive Source Monitoring and Imaging (this issue). Photo by Baoshan Wang.
Back: Receiver velocities derived from single-frequency high-rate (≥1 Hz) carrier-phase observations can be used to turn GNSS instruments into velocity meters of unlimited dynamic range, potentially in real time, enabling instantaneous investigation of large, rapid motions. Grapenthin et al. (this issue) reports on the application of this technique to the 125-km-deep 2016 Mw 7.1 Iniskin, Alaska, earthquake, which created only small permanent surface offsets but much larger dynamic displacements.
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkBack Matter
- PDF Icon PDF LinkEditorial Board