A nearly 70 yr hiatus of major seismic activity in the central eastern Bayan Har block (BKB) ended on 22 May 2021, when a multislip‐peak sinistral strike‐slip earthquake struck western Maduo County, Qinghai. This earthquake, which ruptured the nearly 170 km long Kunlun Pass–Jiangcuo fault, is a rather unique event and offers a rare opportunity to probe the mechanical properties of the intraplate lithosphere of the central eastern BKB. Here, we inferred the fault geometry associated with the Maduo earthquake using Interferometric Synthetic Aperture Radar (InSAR), and relocated aftershocks and inverted the slip distribution through InSAR radar phases and range offsets. Our analysis revealed that the geometry of the fault varies along the strike: the southeastern end of the fault dips steeply to the northeast, whereas the northwestern end dips southwestward. Using the combined datasets to constrain a coseismic slip, we found that the 2021 Maduo event was dominated by sinistral strike‐slip movement, with a slight normal‐slip component at a shallow depth, rupturing the steep‐dipping fault for nearly 170 km in length. Five asperities were detected along the fault strike in the shallow crust (0–12 km) with a peak slip of ∼4.2 m corresponding mostly to simple structures, namely, continuous and straight rupture segments, suggesting that the rupture propagated across geometrical barriers in a multiasperity way. Based on an analysis of the strain field and the focal mechanisms of both the 2021 Maduo earthquake and historical earthquakes that have occurred in the BKB, we propose that the fault zones within the BKB can also generate large earthquakes and have the ability to accommodate the ongoing eastward and northeastward penetration of the Indian plate into the Eurasian plate.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.