Abstract

The Grenville and Caledonian orogens, fundamental to building Laurentia and Baltica, intersect in northern Scotland. The Precambrian Glenelg Inlier, within the Scottish Caledonides, preserves a record of Grenvillian, Knoydartian and Caledonian orogenesis. Based on new mapping and re-interpretation of previous mapping, we present a structural model for the evolution of the Glenelg Inlier. The inlier can be divided into Western Glenelg gneiss comprising orthogneiss with no record of Grenville-age metamorphism, and Eastern Glenelg gneiss with ortho- and paragneiss, affected by Grenvillian eclogite-facies metamorphism. The basement gneisses and their original cover of psammitic, Neoproterozoic Morar Group (Moine) rocks were deformed by three generations of major ductile folds (F1–F3). In medium-strain areas F2 and F3 folds are broadly coaxial and both face to the west; in higher strain areas F2 and F3 folds are oblique to each other. By restoring post-F1 folds and late faults, the Glenelg gneiss inliers are seen to form the core of a major recumbent SSE-facing F1 isoclinal fold nappe – the Proto-Moine Nappe. The upper limb of this nappe is a thick, right-way-up sequence of moderately strained Morar Group rocks whereas the lower, inverted limb comprises intensely deformed, migmatitic Morar Group rocks. Within the constraints of published geochronology, the Proto-Moine Nappe is likely Pre-Caledonian and may have originated during the early Neoproterozoic Knoydartian Orogeny.

You do not currently have access to this article.