Ostracod associations coming from the Upper Triassic (Tropites subbullatus/Anatropites spinosus zones of the Tuvalian substage) clays and sandstones of the Mufara Formation outcropping along the west side of Monte Gambanera (Castel di Iudica, central-eastern Sicily) have been analysed for the first time. The specimens are relatively abundant, silicified, well preserved and often preserved as complete carapaces. Over 200 specimens have been determined. They belong to the families Healdiidae, Bairdiidae, Bythocyprididae, Acratiidae, Cytheruridae, Limnocytheridae, Candonidae, Cavellinidae, Polycopidae and Thaumatocyprididae. Thirty-seven species are identified of which nine species are new: Hungarella forelae n.sp., Hungarella siciliiensis n.sp., Bairdia andrecrasquini n.sp., Bairdia gambaneraensis n.sp., Ptychobairdia iudicaensis n.sp., Ptychobairdia leonardoi n.sp., Petasobairdia jeandercourti n.sp., Kerocythere dittainoensis n.sp. and Mockella barbroae n.sp.

Pour la première fois est ici analysée une association d’ostracodes provenant du Trias supérieur (zones à Tropites subbullatus/Anatropites spinosus du sous étage Tuvalien) dans les argiles et grés de la Formation Mufara affleurant le flanc ouest du Mont Gambanera (Castel di ludica, Sicile Centre Est). Les spécimens, silicifiés, sont relativement abondants, bien préservés et les plus souvent retrouvés sous formes de carapaces complètes. Plus de 200 spécimens ont été identifiés. Ils appartiennent aux familles Healdiidae, Bairdiidae, Bythocyprididae, Acratiidae, Cytheruridae, Limnocytheridae, Candonidae, Cavellinidae, Polycopidae and Thaumatocyprididae. Trente-sept espèces sont reconnues dont sont nouvelles: Hungarella forelae n.sp., Hungarella siciliiensis n.sp., Bairdia andrecrasquini n.sp., Bairdia gambaneraensis n.sp., Ptychobairdia Iudicaensis n.sp., Ptychobairdia leonardoi n.sp., Petasobairdia jeandercourti n.sp., Kerocythere dittainoensis n.sp. and Mockella barbroae n.sp.

Introduction

This is the second contribution on the LateTriassic ostracod fauna of the Mufara Formation outcropping in central eastern Sicily. Previously the ostracod fauna of the Tropites dilleri zone of the Tuvalian substage outcropping at Monte Scalpello has been analysed (Crasquin et al., 2018).

Now, a sedimentary level which is stratigraphically higher than the previous one and referable to the Tropites subbullatus/Anatropites spinosus zones of the Tuvalian substage, has been identified at the western side of the Monte Gambanera, nine kilometres south of Monte Scalpello (Fig. 1). The samples provided a rich and mostly well-preserved ostracod fauna.

Geological setting and studied samples

Monte Gambanera is a modest relief located in central eastern Sicily (F 269 III NE of the Carta d’Italia alla scala 1:25 000) to the southeast of the town of Castel di Iudica (EN), about 40 kilometres west of Catania (Fig. 1). Structurally Monte Gambanera is part of the “Monte Judica Units” (Lentini et al., 1987) and is inserted along the northern margin of the Gela Foredeep, in the geodynamic context of the southern end of the Maghrebian–Sicilian Southern Apennine nappes (Lentini et al., 1987; Grasso, 2001 inter alias).

In the Monte Gambanera area, the outcropping sediments are assigned to the Neo-Tethyan Mesozoic-Cenozoic complex which belongs to the so-called Imerese Succession (Lentini et al., 1987; Montanari, 1987; inter alias) or Imerese-Sicano Succession (Carrillat and Martini, 2009; Di Paolo et al., 2012). The Imerese Basin, where these sedimentary successions were deposited, was delimited by the Panormide Carbonate Platform to the west and the Trapanese Carbonate Platform to the east and south (Catalano and D’Argenio, 1982; Montanari, 1987; Speranza and Minelli, 2014). In this basin, therefore, occurs a transitional facies between the Panormide and Trapanese shelf facies, on the one hand, and a deep marine facies of the Neo-Tethys, on the other. The sedimentary succession of Monte Gambanera (Fig. 2) starts with the “Carnian Flysch” (Auct.) or the Mufara Formation (Schmidt di Friedberg and Trovò, 1962). This unit, outcropping in the southern slopes of the mount, mainly consists of dark grey pelites, which locally contain rare ammonites, with rare interbeds of fossiliferous calcarenites and fibrous calcite with Halobia spp. imprints. The Mufara Fm. has been analysed since the beginning of the nineteenth century by Calcara (1840, 1845), Nelli (1899a, b) and subsequently by Gemmellaro (1904), Scalia (1907a, b, 1909, 1910–1914), Maugeri Patanè (1934) and Lentini (1974). These latter authors attributed these sediments to the Carnian (Late Triassic).

Stratigraphically, the Mufara Fm. outcropping at Monte Scalpello, can be referred to the Tropites dilleri zones of the Tuvalian substage (Crasquin et al., 2018) due to the presence of Trachyceratidae (?Neoprotrachyceras, Trachysagenites, Pamphagosirenites) and Tropitidae. A foraminifera, conodont and palynomorph biostratigraphical analysis, allowed to attribute the levels of the Mufara Fm. outcropping at Monte Gambanera to the Tropites subbullatus/Anatropites spinosus zones of the Tuvalian substage (Fig. 3) (Carrillat, 2001; Carrillat and Martini, 2009). In this stratigraphic horizon, cropping out near masseria Balconere at the west side of Mount Gambanera, two levels consisting of slightly silty clays have been sampled (Fig. 1). As they are stratigraphicaly very close and the number of specimens is quite low, we consider here the ostracod assemblages of both samples in all. They represent the ostracod association of the present study.

Twenty kilograms of sediments were collected from each of the two stratigraphic levels. Sediments were routinely washed, dried in oven and sieved. Then, ostracod specimens were picked out from the 63 μm fraction. The ostracod specimens were examined and measured under a stereomicroscope, then photographed under an LMU Tescan Vega II SEM. The material is housed in the Palaeontological Museum of the University of Catania. The repository number of the specimens are given in the systematic descriptions and/or in plate explanations. Over 200 specimens have been picked out from the two samples. The specimens are silicified, quite well preserved and often consist of complete carapaces.

Systematic palaeontology

Abbreviations. L: length; H: height; W: width; RV: right valve; LV: left valve; DB: dorsal border; VB: ventral border; AB: anterior border; PB: posterior border; PVB: postero-ventral border; AVB: antero-ventral border; PDB: postero-dorsal border; ADB: antero-dorsal border. We follow here the general classification of Moore (1961) and Horne et al. (2002).

Class Ostracoda Latreille (1806)

Subclass Podocopa Müller (1894)

Order Metacopida Sylvester-Bradley (1961)

Suborder Metacopina Sylvester-Bradley (1961)

Superfamily Healdioidea Harlton (1933)

Family Healdiidae Harlton (1933)

The systematics of Mesozoic Healdiidae is quite complicated and an important revision is necessary. We can’t do it here because we have not enough material and most of the discrimination between the genera were based on muscles scars which are not preserved in the present material. However, we try to establish a way to distinguish the Triassic Healdiidae genera when only the external characters of carapaces are available. Therefore we follow the work of Kristan-Tollmann (1973, 1979). The Palaeozoic forms are considered to belong to the subfamily Healdiinae Harlton (1933). The Triassic forms belong to Hungarellinae Kristan-Tollmann (1971) and Liassic ones to the subfamily Pseudohealdiinae Gründel (1964) (Kristan-Tollmann, 1971).

Subfamily Hungarellinae Kristan-Tollmann (1971)

In the Subfamily Hungarellinae, seven genera have been described so far: TriadiohealdiaKristan-Tollmann (1971); AneisohealdiaKristan-Tollmann (1971); LabratellaGramm (1970); HungarellaMéhes (1911); OgmoconchellaGründel (1964) emend Michelsen (1975); SignohealdiaKristan-Tollmann (1971); TorohealdiaKristan-Tollmann (1971).

A great confusion exists in the systematics of Late Permian – Triassic Healdiidae genera Hungarella – Ogmoconcha – Ogmoconchella. Some authors consider HungarellaMéhes (1911) (which has no type material – Gerry and Kozur (1973); but the Hungarian original material in under revision by E. Tóth, pers. com.) and OgmoconchaTriebel (1941) as synonyms (Moore, 1961; Anderson, 1964). Shaver (inMoore 1961), Sohn (1968) and Kristan-Tollmann (1971, 1977a, b) don’t agree with this synonymy. In fact, the two genera are close but the valves are strongly dissymmetric in shape in Hungarella. The third genus, Ogmoconchella was introduced by Gründel (1964) and emended by Michelsen (1975) mainly due to the presence of a spine at PVB. In a recent revision, Forel and Crasquin (submitted) considered that until the relationship of Ogmoconcha and Hungarella is clarified, Hungarella should only been used for Triassic species to avoid artificially rooting Ogmoconcha down to the Triassic. Morphologically, the left and right valves of Hungarella are asymmetrical contrary to those of Ogmoconcha (Kristan-Tollmann, 1977a, b; Lord, 1982): in the absence of observable central muscle scars, all Triassic occurrences of Ogmoconcha and Ogmoconchella are re-attributed to the genus Hungarella.

Genus HungarellaMéhes (1911)

Type species Bairdia problematicaMéhes (1911)

Hungarella forelae n.sp.

(Plate 1A)

2018 Ogmoconchella felsooersensis (Kozur, 1970) ; Crasquin et al. : 133, figs. 6A-B.

Etymology. Dedicated to Dr. Marie-Béatrice Forel, Muséum national d’Histoire naturelle, Paris.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 21 H 13/10/2019, Plate 1A

Paratype. One complete carapace, collection number PMC O 77 P 13/10/2019, Crasquin et al. (2018), fig. 6A.

Diagnosis. A species of Hungarella with triangular shape carapace, a posteroventral spine at RV, delicate flattening in blade shape at anterior border of RV.

Description. Massive carapace with a symmetric triangular shape; quite symmetric relative to H max; shape of left and right valves similar ; LV is significantly larger than RV and radius of curvature of PB smaller than anterior one; LV overlaps RV all around the carapace with minimum at PVB; maximum of H located in front of or at mid L; maximum of L at mid H or a little below; VB quite straight; presence of a very fine flattening all around the AB of RV in blade shape; small spine more or less distinct at PVB of RV; dorsal view biconvex with valves almost symmetric in shape and W max at or just behind mid L; surface seems to be smooth.

Dimensions. L = 706–919 μm; H = 529–622 μm (see Fig. 4).

Occurrence. Tuvalian– Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks. The present specimens are close to Ogmoconchella felsooersensis (Kozur, 1970) from the early Anisian of Hungary (Kozur, 1970, Monostori, 1995) and Romania (Sebe et al., 2013). In a previous paper (Crasquin et al., 2018) two of the present specimens were attributed to this O. felsooerensis. Based on the new material this determination was revised and they are attributed to Hungarella forelae. Here the carapace is more triangular with a smaller radius of curvature of PB; the blade at AB is also more expressed here. The specimens described by Forel et al. (2019b; Plate 4, particularly fig. E, K) as Hungarella gommerii Forel, 2019 from the Carnian of Sichuan (South China) are very close to our specimens. However, the Sichuan specimens are smaller (biggest one ≈ L = 600 μm, H = 400 μm) and show a smaller radius of curvature at both extremities. The largest specimen of H. forelae (Fig. 4) presents some morphological variability: overlap less important, at RV: the blade is located only at the ventral part of AB and occurrence of a small spine at the upper part of it, at LV: anteroventral blade seems to be also present. We consider that these morphological variations could be the expression of ontogenic variations but some doubt remains.

Hungarella siciliiensis n.sp.

(Plate 1B and 1C)

Etymology. The species name refers to Sicily where the locus typicus is located.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 22 H 13/10/2019, Plate 1B.

Paratype. One complete carapace, collection number PMC O 78 P 13/10/2019, Plate 1C.

Diagnosis. A species of Hungarella with triangular shape carapace, two posteroventral spines at RV, flattening in blade shape plus a spine at anterior border of RV, spine at AB of LV.

Description. Massive stocky carapace with a symmetric triangular shape; quite symmetric relative to H max; general shape of valves similar, but LV is significantly larger than RV and radius of curvature of PB smaller than anterior one; LV overlaps RV all around the carapace with minimum at PVB; maximum of H located at mid L or in front of mid L; maximum of L at mid H or a little below mid H; VB quite straight; presence of a very fine flattening at AB of RV in blade shape and a spine located near the maximum of convexity of AB; two more or less distinct spines at PVB of RV; one spine at AB of LV; dorsal view biconvex with valves almost symmetric in shape and W max at or just behind mid L; surface seems to be smooth.

Dimensions. L = 606–760 μm; H = 503–533 μm (see Fig. 4).

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Remarks.Hungarella siciliiensis n.sp. is very close to H. forelae n.sp.. The shapes of the valves are similar. The main differences between the two species is the presence of 2 spines at PVB of RV, presence of a spine at AB of booth valves and the less distinct “blade” at the AB of H. siciliiensis n.sp.. We can’t exclude that these differences are due to morphological variability of H. forelae n.sp. (sexual or ontogenic). However, for the time being we have not enough specimens to settle this question.

Hungarella sp. A

(Plate 1D)

Material. One complete carapace.

Dimensions. H = 538 μm; L = 775 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order Podocopida Sars (1866)

Suborder Bairdiocopina Gründel (1967)

Superfamily Bairdiodea Sars (1866)

Family Bairdiidae, Sars (1866)

Genus BairdiaMcCoy (1844)

Type species Bairdia curtaMcCoy (1844)

Bairdia andrecrasquini n.sp.

(Plate 1E and 1F)

Etymology. In memory and honour of Dr. André Crasquin, father of the first author.

Material. Three complete carapaces and one broken carapace.

Holotype. One complete carapace, collection number PMC O 23 H 13/10/2019 (Plate 1E).

Paratype. One complete carapace, collection number PMC O 79 P 13/10/2019 (Plate 1F).

Diagnosis. A species of Bairdia with an elongated carapace, flattened AB and PB, and a ventral ridge along the posterior part of the VB and PB.

Description. Bairdioid carapace, quite elongated (H/L = 0.44); DB straight at RV and slightly convex at LV; ADB and PDB straight and quite symmetric with respect to DB; AB with large radius of curvature and maximum located above mid-H, AB strongly flattened laterally; VB slightly concave; PB slender and pointed, maximum of curvature located at lower 1/3 of H, strongly flattened laterally; presence of the ventral ridge which begins in posterior part of VB and runs along PB.

Remarks. This species is quite original and differs from all other ones by the specific characters (flattened AB and PB, and a ventral ridge along the posterior part of the VB and PB.). The shape of carapace is comparable to Bairdia sp. 4 sensuForel et al. (2019b) from the Carnian of China and to Bairdia liviaeForel and Grădinaru (2018) from the Anisian of North Dobrogea, Romania (Forel and Grădinaru, 2018) but this last species does not show the specific characteristics.

Dimensions. H = 372–415 μm; L = 372–415μm.

Occurrence. Tuvalian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia gambaneraensis n.sp.

(Plate 1G and 1H)

2018 Bairdia cf. deformataKollmann (1963); Crasquin et al.: 134, fig. 6K-L.

Etymology. Refering to the locus typicus Monte Gambanera, Sicily, Italy.

Material. Four complete carapaces.

Holotype. One carapace, collection number PMC O 24H 13/10/2019 (Plate 1G).

Paratype. One complete carapace, collection number PMC O 80 P 13/10/2019 (Plate 1H).

Diagnosis. A species of Bairdia with a very compact carapace, a continuously arched dorsal boarder and flattened and crenulated ventral parts of AB and PB

Description. Bairdioid carapace, quite short (H/L = 0.6–0.7), LV overlaps RV all around the carapace with minimum at AB and anterior part of VB; LV: all the dorsal part regularly arched; AB with large radius of curvature with maximum at mid-H, VB almost straight; BP with large radius of curvature with maximum at lower 1/3 of H; PDB arched; RV: DB straight, ADB straight with an angulation of 145°–150° against DB; AB with large radius of curvature; AVB and PVB flattened laterally in its very external part and with very fine crenulation; VB slightly concave; bairdioid beak quite absent; PDB straight with an angle of 125°–130° with DB; Presence of a shoulder on medio-dorsal part of LV; carapace biconvex and quite slender in dorsal view.

Dimensions. L = 886–910 μm; H = 600–643 μm.

Occurrence. Tuvalian, Tropites dilleri zone (Crasquin et al., 2018), Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Remarks.Bairdia gambaneraensis n.sp. is similar to Bairdia deformataKollmann (1963) from the Rhaetian of Austria. The carapace of the present material is longer and presents a shoulder at LV. The new species has exactly the same general shape of valves as B. penovoideaBolz (1971) from Late Norian–Rhaetian of Austria and differs from this species only by a larger AB, a longer DB and the ventral crenulation of AB and PB.

Bairdia cassiana (Reuss, 1869)

(Plate 1I)

1869 Cythere cassiana n.sp.; Reuss: 108.

1869 Bairdia cassiana (Reuss, 1869); Gümbel: 180, pl. 5, figs. 18-19.

1958 Bairdia cassiana (Reuss, 1869); Styk: 171, fig. 3/1.

1970 Bairdia cassiana (Reuss, 1869); Ulrichs: 705-706, pl. 1, figs. 1-2.

1978 Bairdia cassiana (Reuss, 1869); Kristan-Tollmann: 81, pl. 1, fig. 4; pl. 6, fig. 6.

1991 Bairdia cassiana (Reuss, 1869); Kristan-Tollmann et al.: 200, pl. 1, fig. 5.

1995 Bairdia cassiana rotundidorsata n.ssp.; Monostori: 42, Pl. 2, figs. 4-5.

1996 Bairdia (Rectobairdia) garciai n.sp.; Crasquin-Soleau and Grădinaru: 77-78, pl. 2, figs. 5, 8.

2013 Bairdia cassiana (Reuss, 1869); Monostori and Tóth: 310, pl. 2, figs. 7, 8, 10.

2014 Bairdia cassiana (Reuss, 1869); Mette et al.: pl. 2, fig. 1.

2014 Bairdia cassiana (Reuss, 1869); Monostori and Tóth: 26, pl. 1, fig. 14.

2018 Bairdia cassiana (Reuss, 1869) ; Crasquin et al.: 134, fig. 6M.

2019a Bairdia cassiana (Reuss, 1869), Forel et al., in press, figs. 4F–H.

Material. Four complete carapaces.

Dimensions. H = 486–533 μm; L = 840–948μm.

Occurrence. Early Carnian, Late Triassic, Southern Alps, Italy (Reuss, 1869; Gümbel, 1869; Ulrichs, 1970; Kristan-Tollmann, 1978); Carnian, Late Triassic, Święty Krzyż Mountain, Poland (Styk, 1958); Carnian, Late Triassic, Transdanubian Range, Hungary (Kristan-Tollmann, 1991); Late Anisian, Middle Triassic, Balaton Highland, Hungary (Monostori, 1995); Early Anisian, Middle Triassic, North Dobrogea, Romania (Crasquin-Soleau and Grădinaru, 1996); Ladinian, Middle Triassic, Balaton Highland, Hungary (Monostori and Tóth, 2013, 2014); Middle Anisian, Middle Triassic, Northern Calcareous Alps, Austria (Mette et al., 2014); Carnian, Late Triassic, Karavanke Mountains, Slovenia (Forel et al., 2019b); Tuvalian – Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia cf. monostorii Forel and Grădinaru (2018)

(Plate 1J)

2018 Bairdia cf. humilisMonostori (1995) ; Crasquin et al.: 134, figs. 6i-j.

Material. One complete carapace and one broken carapace.

Dimensions. (complete carapace) H = 311 μm; L = 806μm.

Remarks.Forel and Grădinaru (2018) renamed Bairdia humilisMonostori (1995) in Bairdia monostorii nom. nov.

Occurrence. Tuvalian – Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites dilleri zones (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp.1 sensu Crasquin, Sciuto, Reitano, 2018

(Plate 1K)

2018 Bairdia sp. 1; Crasquin et al.: 134, fig. 6N-O

Material. One complete carapace and one right valve.

Dimensions. (complete carapace) H = 462 μm; L = 800μm.

Remarks. This species of Bairdia is characterized by the BD which is underlined by a blade, and by the reticulation of the carapace. The upper part of PB is quite horizontal and its radius of curvature is small. This could be a new species.

Occurrence. Tuvalian – Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. A

(Plate 1L)

Material. Two complete carapaces.

Dimensions. H = 400–440 μm; L = 785–882μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. B

(Plate 1M)

Material. One complete carapace.

Dimensions. H = 600 μm; L = 1000μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. C

(Plate 1N)

Material. One complete carapace.

Dimensions. H = 643 μm; L = 1147μm.

Remarks. This species is characterized by its triangular shape, the flattening of the ventral borders and the reticulated surface. The PB has a very small radius of curvature.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. D

(Plate 1O)

Material. One complete carapace.

Dimensions. H = 496 μm; L = 1014 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bairdia sp. E

(Plate 1P)

Material. One complete carapace.

Dimensions. H = 476 μm; L = 953μm.

Remarks. This elongated species shows a blade underlying the BD.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Bairdia sp. F

(Plate 1Q)

Material. Two complete carapaces.

Dimensions. H = 600–615 μm; L = 885–953μm.

Remarks. This compact species (H/L = 0.64–0.67) has a flattened BP and AB and a shoulder at the dorsal part of the right valve.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus HiatobairdiaKristan-Tollmann (1970)

Type species: Hiatobairdia subsymmetricaKristan-Tollmann (1970)

Hiatobairdia subsymmetricaKristan-Tollmann (1970)

(Plate 1R)

1970 Hiatobairdia subsymmetrica n. gen. n.sp.; Kristan-Tollmann: 268, pl. 35, figs. 1–3.

1976 Hiatobairdia subsymmetricaKristan-Tollmann (1970); Tollmann: 276, pl. 163, fig. 14.

1978 Hiatobairdia subsymmetrica deformis n.sp.; Kristan-Tollmann: 83, pl. 4, figs. 1–7.

1979 Hiatobairdia subsymmetricaKristan-Tollmann (1970); Kristan-Tollmann et al.: 147, pl. 6, fig. 4.

2018 Hiatobairdia subsymmetricaKristan-Tollmann (1970); Crasquin et al.: 134, figs. 6F–H.

Material. Three left valves.

Dimensions. H = 412–569 μm; L = 812–969μm.

Occurrence. Early Carnian of South Tyrol, Italy (Tollmann, 1976; Kristan-Tollmann, 1978); Rhaetian of Austrian Alps (Kristan-Tollmann, 1970) and Central Iran (Kristan-Tollmann et al., 1979); Tuvalian – Carnian Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Hiatobairdia sp. A

(Plate 2A)

Material. One complete carapace and one right valve.

Dimensions. (complete carapace) H = 533 μm; L = 948 μm.

Remarks. This species has a straight DB and presents a ridge at the dorso-median part of the RV.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus MirabairdiaKollmann (1963)

Type species Mirabairdia pernodosaKollmann (1963)

Mirabairdia pernodosaKollmann (1963)

(Plate 2B)

1963 Mirabairdia pernodosa n.sp.; Kollmann: 177-178, pl. 1, figs. 1-2, pl. 8, figs. 1–6.

1971a Triebelina (Mirabairdia) pernodosa illyrica n.spp.; Kozur: 17, fig. 1G.

1971a Triebelina (Mirabairdia) balatonica n.sp.; Kozur: 15-16, figs. 2I, 3C.

1971 Mirabairdia pernodosa Kollm.; Kristan-Tollmann: text-fig. 1/8.

1984 Triebelina (Mirabairdia) pernodosa illyrica Kozur; Salaj and Jendrejakova: pl. 2, figs. 1–4.

2014 Triebelina (Mirabairdia) pernodosa (Kollmann, 1963); Monostori and Tóth: 27-28, pl. 2, figs. 7-8.

Material. One complete carapace, 13 RV and 2 LV.

Dimensions. (complete carapace and LV) H (without spines) = 453–507 μm; L = 826–923μm.

Occurrence. Anisian, Western Carpathians, Slovakia (Salaj and Jendrejakova, 1984; Kozur, 1971a); Anisian, Balaton Highland, Hungary (Kozur, 1971a); Ladinian, Dolomites, South Tirol, Italy, (Kristan-Tollmann, 1971); Ladinian, Northern Calcareous Alps, Cassian beds, Austria (Kollmann, 1963); Ladinian E-Bakony, Hungary (Monostori and Tóth, 2014) ; Tuvalian– Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus PtychobairdiaKollmann (1960)

Type species Ptychobairdia kuepperiKollmann (1960)

Ptychobairdia iudicaensis n.sp.

(Plate 2C and 2D)

Etymology. From the locus typicus Castel di Iudica, Sicily, Italy.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 25 H 13/10/2019 (Plate 2C).

Paratype. One complete carapace, collection number PMC O 81 P 13/10/2019 (Plate 2D).

Diagnosis. A species of Ptychobairdia with a reticulated carapace which is flattened laterally all around except at the ventral part; LV significantly higher than RV, presence of vertical sulci at antero-dorsal part of the carapace.

Description. Carapace massive, high (H/L = 0.6); surface reticulated;

LV: Flattened laterally all around with maximum at DB and PB; BD strongly arched; AB with quite large radius of curvature and maximum at mid H; VB almost straight; BP with a very small curvature; two vertical sulci in dorsal part; LV strongly overlapping RV all around with maximum at BD.

RV: Strongly flattened all around except in ventral part; presence of a sulcus in AD part; BD long; AB with quite small radius of curvature; VB gently concave at its anterior part; BP very slender; DB, ADB, AVB, PVB, PDB straight.

Remarks.Ptychobairdia iudicaensis n.sp. is comparable with P. oberhauseriKollmann (1960) from the Rhaetian of Austria (Kollmann, 1960) and the Carnian – Norian of Queen Charlotte Island, Canada (Arias and Lord, 2000). The latter species is longer, has a smaller AB and shows a horizontal sulcus. P. iudicaensis n.sp. differs from P. kristanaeKollmann (1960) from the Rhaetian – Early Jurassic of Austria (Kollmann, 1960, 1963) and the late Carnian of Sicily (Crasquin et al., 2018) by its reticulated carapace and the RV being clearly smaller than LV.

Dimensions. L = 720–1083 μm; H = 480–667 μm (see Fig. 5).

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Ptychobairdia leonardoi n.sp.

(Plate 2E and 2F)

Etymology. Dedicated to Leonardo Reitano, son of Agatino Reitano.

Material. Six right valves, eight left valves.

Holotype. One right valve, collection number PMC O 26 H 13/10/2019 (Plate 2E).

Paratype. One left valve, collection number PMC O 82 P 13/10/2019 (Plate 2F).

Diagnosis. A species of Ptychobairdia with a short coarse reticulated carapace, strongly compressed and finely reticulated AB and PB and a central node.

Description. Carapace with massive coarse reticulation, flattened laterally at AB and PB; DB straight at both valves and parallel to VB; ontogenic modifications of DB: at RV with nodules or blade at biggest specimens, at LV development of shoulders at each extremities in largest specimens; AB and PB with small radius of curvature, flattened laterally and covered by a fine reticulation; VB straight to slightly concave, with development of adventral structure; presence of a big node in median part of the carapace.

Remarks.Ptychobairdia leonardoi n.sp. differs from other species by the specific characters. Margarobairdia zapfeiKristan-Tollmann (1983) from the Anisian of South China (Kristan-Tollmann, 1983) has a similar valve shape but a different ornamentation.

Dimensions. L = 610–776 μm; H = 362–553 μm (see Fig. 6).

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus PetasobairdiaChen and Shi (1982)

Type species Petasobairdia bicornutaChen and Shi (1982)

Petasobairdia jeandercourti n.sp.

(Plate 2G and 2H)

Etymology. Dedicated to past Pr. Jean Dercourt, who was the mentor of the first author.

Material. One broken carapace and three left valves.

Holotype. One broken carapace, collection number PMC O 27 H 13/10/2019 (Plate 2G).

Paratype. One left valve, collection number PMC O 83 P 13/10/2019 (Plate 2H).

Diagnosis. A species of Petasobairdia with a long reticulated carapace and elongated nodes at ADB and PDB of both valves.

Description. Carapace long (H/L ≈ 0.4), reticulated, strongly laterally compressed along AB, AVB, VB, PVB, PB; DB long and straight at both valves; presence of an elongated node at ADB and PDB of both valves; LV with two big horns with large base at each extremities of DB.

Dimensions. (holotype and paratype without spines) H = 348–373 μm; L = 826–853μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks.Petasobairdia jeandercourti n.sp. is comparable to P. bicornutaChen and Shi (1982) from the Late Permian of Hubei Province (Chen and Shi, 1982) which has a much shorter DB. P. longispinosa (Kozur, 1971a, b, c) from Anisian of Slovakia (Kozur, 1971a), Anisian and Middle Triassic of Romania (Salaj and Jendrejakova, 1984; Crasquin-Soleau and Grădinaru, 1996; Sebe et al., 2013), Anisian of Austria (Mette et al., 2014), Ladinian of Hungary (Monostori and Tóth, 2013) and Carnian of Southern Turkey (Forel et al., 2017) has a shorter DB and doesn‘t have AD and PD nodes.

Genus UrobairdiaKollmann (1963)

Typse species: Urobairdia austriacaKollmann (1963)

Urobairdia angustaKollmann (1963)

(Plate 2I)

1963 Urobairdia angusta n.g. n.sp.; Kollmann: 167, pl. 6, figs. 1–4.

1965 Urobairdia angustaKollmann (1963); Széles: 414, pl. 6, fig. 5.

1995 Bairdia (Urobairdia) angusta recta n.sp.; Monostori: 43, pl.3, figs. 3-4.

2010 Urobairdia angustaKollmann (1963); Zorn: 271-272, pl. 6, figs. 12–15.

2013 Bairdia (Urobairdia) angustaKollmann (1963); Monostori and Tóth: 7, pl. 1, figs. 10–12.

2014 Bairdia (Urobairdia) angustaKollmann (1963); Monostori and Tóth: 25-26, Pl. 1, fig. 14.

Material. Two complete carapaces

Dimensions. H = 440–500 μm; L = 826–871 μm.

Occurrence. Late Norian, Zlambach Formation, Austria (Kollmann, 1963; Zorn, 2010); Anisian, Felsőörs, Hungary (Monostori, 1995); Carnian, Nosztori Valley, Hungary (Széles, 1965); Ladinian-Carnian, Balaton Highland, Hungary (Monostori and Tóth, 2013, 2014); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Genus BairdiacyprisBradfield (1935)

Type species: Bairdiacypris deloiBradfield (1935).

Bairdiacypris triassicaKozur (1971a, b, c)

(Plate 2J)

1911 ?Bairdia silicula Jones; Méhés: 16-17, pl. 1, figs. 19–21

1971 Bairdiacypris triassica n.sp.; Kozur: 5-6, figs. 2H–L

2013 Bairdiacypris triassicaKozur (1971a, b, c); Monostori and Tóth: 313-314, pl. 3, figs. 7-8

2014 Bairdiacypris triassicaKozur (1971a, b, c); Monostori and Tóth: 25, pl. 1, fig. 12

2017 Bairdiacypris triassicaKozur (1971c); Forel et al.: fig. 10U

Material. Two complete carapaces

Dimensions. H = 361–374 μm; L = 774–812μm

Occurrence. Early Carnian, Balaton highland, Hungary (Méhes, 1911; Kozur, 1971c), Ladinian, Nosztori Valley, Hungary (Monostori and Tóth, 2013); Ladinian – Carnien, Balaton Highland (Monostori and Tóth, 2014), Carnian, Mersin, Turkey (Forel et al., 2017); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Family Bythocyprididae Maddocks (1969)

Genus BythocyprisBrady (1880)

Type species: Bythocypris reniformisBrady (1880)

Bythocypris sp. A

(Plate 2K)

Material. Two complete carapaces and two LV.

Dimensions. H = 433–500 μm; L = 775–1090 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Family Acratiidae Gründel (1962)

Genus AcratiaDelo (1930)

Type species: Acratia typicaDelo (1930).

Acratia maugeriiCrasquin et al. (2018)

(Plate 2L)

1991 Acratia sp.; Kristan-Tollmann: 196, pl. 1, fig. 1.

2013 Acratia goemoeryi (Kozur, 1970); Monostori and Tóth: 6-7, pl. 4, only fig. 2.

2018 Acratia maugerii n.sp.; Crasquin et al.: 137-138, fig. 7H–J.

Material. One complete carapace and two LV.

Dimensions. H = 373–464 μm; L = 866–1066μm.

Occurrence. Late Ladinian of NE Iran (Kristan-Tollmann, 1991), Balaton Highland, Hungary (Monostori and Tóth, 2013); Tuvalian– Carnian, Tropites dilleri zone (Crasquin et al., 2018) and Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Superfamily Cytheroidea Baird (1850)

Family Cytheruridae Müller (1894)

Subfamily Cytherurinae Müller (1894)

Genus KerocythereKozur and Nicklas (1970)

Type species Cythere raiblianaGümbel (1869)

Kerocythere dittainoensis n.sp.

(Plate 2M and 2N)

Etymology. Referring to the Dittaino river which flows near to the locus typicus.

Material. Four complete carapaces.

Holotype. One complete carapace, collection number PMC O 28 H 13/10/2019 (Plate 2M).

Paratype. One complete carapace, collection number PMC O 84 P 13/10/2019 (Plate 2N).

Diagnosis. A species of KerocythereKozur and Nicklas (1970) with a subrectangular reticulate carapace, presence of a lateral thick ridge which ascends at PB and occurrence of ventral ridges, one thick and several thinner ones parallel to VB.

Description. Carapace subrectangular, almost equivalve; BD long and straight, presence of a ridge on each side of hinge; presence of an eye spot; AB with large radius of curvature with maximum located below mid-H, flattened laterally and smooth; VB almost straight; PB with small radius of curvature with maximum around mid H, upper and lower part quite straight; H max at anterior angle; L max at PB; sulcus more or less developed in anterior 1/3 of L; surface reticulated and ornamented with possible pustules and ridges: one lateral, thick, reaching from antero-ventral part of the carapace up to PB, ascending in posterior part; group of ventral ridges, one thick parallel to VB and several (at least three) below.

Dimensions. L = 651–731 μm; H = 309–376 μm.

Occurrence.Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks.Kerocythere dittainoensis n.sp. could be compared to Kerocythere reticulataKristan-Tollmann (1972) from early Carnian of the Dolomites (Italy). This species doesn’t show the ventral group of ridges but has one ridge at the AD part of the carapace following the AB. The new species is also close to Kerocythere tricostata Forel, 2017 from the middle Carnian of southern Tauride-Anatolide platform (Turkey; Forel et al., 2017). At the present material the lateral ridge is longer, ascends at its posterior part and the surface is reticulated.

Family indet.

Genus Renngartenella Schneider 1957 (inMandelstam et al., 1957)

Renngartenella sanctaecrusisKristan-Tollmann (1973)

(Plate 2O)

1973 Renngartenella sanctaecrucis Kristan-Tollmann; Kristan-Tollmann and Hamedani: 215, 217–219, pl. 8, figs. 1–6; pl. 11, figs. 1, 3, 5, 6; pl. 12, fig. 10.

1979 Renngartenella sanctaecrucisKristan-Tollmann (1973); Liebermann: 215, pl. 5, fig. 2.

1982 Renngartenella sanctaecrucisKristan-Tollmann (1973); Basha: pl. 1, fig. 15.

1990 Renngartenella sanctaecrucisKristan-Tollmann (1973); Gerry et al.: 96, pl. 1, figs 11–13.

1994 Renngartenella sanctaecrucisKristan-Tollmann (1973); Monostori: 320, 322, figs 5/5–7.

2001 Renngartenella sanctaecrucisKristan-Tollmann (1973); Keim et al.: fig. 8C.

2014 Renngartenella sanctaecrucisKristan-Tollmann (1973); Monostori and Tóth: 29-30, pl.3, figs. 10–12.

2019a Renngartenella sanctaecrucisKristan-Tollmann (1973); Forel et al.: fig. 7T-U, in press.

Material. Ten carapaces.

Dimensions. H = 316–439 μm; L = 567–900 μm.

Occurrence. Julian, early Carnian, Heiligkreuz Formation, Italy (Kristan-Tollmann and Hamedani, 1973); Carnian, Late Triassic, Italian Alps (Lieberman, 1979); Cordevolian, Carnian, Jordan (Basha, 1982); Carnian, Israel (Gerry et al., 1990); Carnian, Balaton Highland, Hungary (Monostori 1994; Monostori and Tóth, 2014); Carnian, Dolomites, Northern Italy (Keim et al., 2001); Carnian, Karavanke Mountains, Slovenia (Forel et al., 2019b); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Superfamily Cypridoidea Baird (1845)

Family Limnocytheridae Klie (1938)

Genus MockellaBunza and Kozur (1971)

Type species: Mockella muelleriBunza and Kozur (1971); subsequent designation (Kozur, 1973)

Mockella barbroae n.sp.

(Plate 2P and 2Q)

2018 Mockella muelleriBunza and Kozur (1971), Crasquin et al.: 139, figs. 7O-P.

Etymology. Personal dedication of the first author to Mrs. Barbro Lamy, in token of friendship and affection.

Material. Seven complete carapaces and two carapaces from Crasquin et al. (2018)

Holotype. One complete carapace, collection number PMC O 29 H 13/10/2019 (Plate 2P).

Paratype. One complete carapace, collection number PMC O 85 P 13/10/2019 (Plate 2Q).

Diagnosis. A species of Mockella with a long subrectangular carapace and a well-developed rib all around the carapace.

Description. Carapace sub rectangular, long (H/L = 0.535); eye spot well developed; AB with maximum of curvature located low between mid-H and lower 1/3 of H; VB straight; PB equivalent to AB in heteromorphs and smaller in tecnomorphs with maximum of curvature located above mid-H; anteromedian sulcus located in front of mid-L; posterior lobe well developed; anterior lobe less distinct; presence of a distinct ridge all around the carapace including BD; presence of additional ridges on lateral surface of the valves:

  • a median ridge which begins at maximum of curvature of AB and precedes on the posterior lobe; this ridge is high and stands out on the surface;

  • a lateral ridge below the lobes parallel to VB;

  • a small ridge in upper part of AB and below the eye spot.

The valve surface is reticulated with 4 small pustules distributed parallel to AB; in dorsal view, the flanks are parallel. Sexual dimorphism present, expressed by the thickness of the posterior part of the carapace in heteromorphs.

Dimensions. L = 270–492 μm; H = 150–275 μm (see Fig. 7).

Occurrence. Late Carnian (Tropites dilleri zone), Mufara Formation, Sicily, Italy Tuvalian – Carnian (Crasquin et al., 2018) and Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Remarks.Mockella barbroae n.sp. is very close to M. muelleriBunza and Kozur (1971) from the late Carnian of Tyrol, Austria (Bunza and Kozur, 1971) and the Carnian of Monte Cammarata, Sicily (Cafiero and De Capoa Bonardi, 1982). In the study on the Mufara Formation (Crasquin et al., 2018) we attributed the specimens to the latter species. The very well preserved present material enabled us to review our attribution. At the present specimens the BP is larger, the median ridge ends at the posterior lobe and doesn’t reach the BP; an additional ridge is present below the lobes and the flanks are parallel in dorsal view.

Genus SimeonellaSohn (1968)

Type species: Simeonella brotzenorumSohn (1968).

Simeonella brotzenorumSohn (1968)

(Plate 2R)

1968 Simeonella brotzenorum n.sp.; Sohn: 23-24, pl. 2, figs. 1–4, 6–8, 12–22.

1971 Simeonella brotzenorum alpina n.sp.; Bunza and Kozur: 4-5, pl. 1, figs. 5–7, 13.

1971 Simeonella brotzenorum norica n.sp.; Bunza and Kozur: 5-6, pl. 1, fig. 3.

1973 Simeonella brotzenorumSohn (1968); Kristan-Tollmann and Hamedani: text-fig. 13/2.

1974 Simeonella brotzenorumSohn (1968); Hirsch and Gerry: pl. 2, figs. 1-2.

1979 Simeonella brotzenorumSohn (1968); Lieberman: 103, pl. 5, figs. 6-7.

1979 Simeonella brotzenorum alpinaBunza and Kozur (1971); Styk: 119, pl. 28, figs. 9-10.

1982 Simeonella brotzenorumSohn (1968); Basha: pl. 1, fig. 11.

1990 Simeonella brotzenorumSohn (1968); Gerry et al.: 95, pl. 1, figs. 3–5.

1994 Simeonella brotzenorum nostorica n.sp.; Monostori: 324-325, text-fig. 6/1–6.

2001 Simeonella brotzenorum nostoricaMonostori (1994); Keim et al.: fig. 8B.

Material. Two carapaces.

Dimensions. H = 269–296 μm; L = 446–488 μm.

Occurrence. Ladinian to Carnian, Makhtesh Ramon, Israel (Sohn, 1968; Hirsch and Gerry, 1974; Gerry et al., 1990); Carnian, Northern Calcareous Alps, Austria (Bunza and Kozur, 1971; Kristan-Tollmann and Hamedani, 1973); Carnian, Julian Alps, Italy (Lieberman, 1979; Keim et al., 2001); Carnian, Poland (Styk, 1958), Carnian, Jordan Valley, Jordan (Basha, 1982); Carnian, Balaton Highland, Hungary (Monostori, 1994; Monostori and Tóth, 2014); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this work).

Family Candonidae Kaufmann (1900)

Genus ParacyprisSars (1866)

Paracypris? cf. redcarensis (Blake, 1876)

(Plate 3A)

Material. One complete carapace.

Dimensions. H = 257 μm; L = 561μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte

Gambanera, Central-Eastern Sicily, Italy (this study).

Paracypris? sp. A

(Plate 3B)

Material. One carapace.

Dimensions. H = 442 μm; L = 631 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order Platycopida Sars (1866)

Suborder Platycopina Sars (1866)

Superfamily Cavellinoidea Egorov (1950)

Family Cavellinidae Egorov (1950)

Genus BektasiaÖzdikmen (2010)

Type species: Reubenella avnimelechiSohn (1968).

Bektasia sp. A

(Plate 3C)

Material. One carapace.

Dimensions. H = 477 μm; L = 787 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Bektasia sp. B

(Plate 3D)

Material. One carapace.

Dimensions. H = 545 μm; L = 763 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order, genus and species indet.

Podocopida gen. sp. indet.

(Plate 3E)

Material. One carapace.

Dimensions. H = 188 μm; L = 364 μm.

Occurrence. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Subclass Myodocopa Sars (1866)

Order Myodocopida Sars (1866)

Superfamily Polycopidea Sars (1866)

Family Polycopidae Sars (1866)

Genus PolycopeSars (1866)

Polycope baudiCrasquin-Soleau and Grădinaru (1996)

(Plate 3F)

1996 Polycope baudi n.sp.; Crasquin and Grădinaru: 15-16, figs. 1–3.

2013 Polycope baudi Crasquin and Grădinaru 1996; Sebe et al.: pl. 1, fig. 1.

Material. Two carapaces.

Dimensions. H = 330–328 μm; L = 357–376 μm.

Occurrences. Early – middle Anisian, Uzum Bair, Dobrogea, Roumania (Crasquin-Soleau and Grădinaru, 1996; Sebe et al., 2013); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

?Polycope densoreticulataMonostori and Tóth (2013)

(Plate 3G)

2013 Polycope densoreticulata n.sp.; Monostori and Tóth: 5, pl. 1, figs. 4–7.

Material. Three carapaces.

Dimensions. H = 204–293 μm; L = 231–306 μm.

Occurrence. Ladinian, Balaton Highland, Hungary (Monostori and Tóth, 2013); Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Polycope sp. A

(Plate 3H)

Material. One carapace.

Dimensions. H = 289 μm; L = 278 μm.

Occurrences. Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Order Halocyprida Dana (1853)

Suborder Halocypridina Dana (1853)

Superfamily Thaumatocypridoidea Müller (1906)

Family Thaumatocyprididae Müller (1906)

Genus Thaumatomma Kornicker and Sohn (1976)

Type species: Thaumatomma piscifronsKornicker and Sohn (1976)

Thaumatomma ? sp.A

(Plate 3I)

Material. Two carapaces.

Dimensions. H = 525–600 μm; L = 575–600 μm.

Occurrence. Tuvalian– Carnian, Tropites subbullatus/Anatropites spinosus zones, Monte Gambanera, Central-Eastern Sicily, Italy (this study).

Assemblage analysis

The assemblage is composed of 200 specimens belonging to 10 families (plus two undetermined families), 19 genera and 37 species. The 10 determined families present are: Healdiidae, Bairdiidae, Bythocyprididae, Acratiidae, Cytheruridae, Limnocytheridae, Candonidae, Cavellinidae, Polycopidae, Thaumatocyprididae. The relative abundance of the different families expressed by the numbers of genera and species is given in Figure 8.

The Bairdiidae, the most abundant family in number of species (53%) and genera (37%) (Fig. 8), are present in marine environments ranging from very shallow waters up to deep seas. The morphology of the family changes from massive thick-shelled forms in nearshore environments to elongate thin-shelled forms beyond continental slope (particularly in genus Bairdia). In the same way, the carapaces of Acratiidae lengthen with depth (as example: Acratia goemeryiKozur (1970) from Early-Smithian- to Late-Carnian-Triassic; see Forel et al., 2017). Here these two families present thick and ornamented shells (Plates 1E1R and 2A2L) which testify an open marine environment with moderate energy. The Healdiidae do also show a change of morphology with depth. The specimens with massive shells and small spines are neritic inhabitants (Plate 1A1D) of relatively nearshore muddy conditions. In the deep sea, the specimens are thin shelled, elongate with long spines (e.g. Palaeozoic genus TimorhealdiaBless, 1987). In other families, some genera also show different morphological adaptation from neritic to deep sea environments (Healdia, Microcheilinella etc. see synthesis Tab. 1 in Crasquin and Horne). The ratios between these different morphologies have been used to characterize the depth of ate Palaeozoic and Early Mesozoic environments since quite a long time (model of Lethiers and Raymond, 1991). The present assemblage doesn’t include any unequivocal deep water taxa such as those discovered recently in the Carnian of Southern Turkey for example (Forel et al., 2017) or of Sichuan, South China (Forel et al., 2019b). Although the number of specimens is very low, the diversity is quite high with 10 determined families (plus 2 undetermined), 17 genera and 37 species. This biodiversity testifies normal marine conditions and absence of environmental stress. The taxon Simeonella brotzenorumSohn (1968) which is characteristic of brackish – hypersaline conditions (Gerry et al., 1990; Monostori, 1994) is present but with only 2 carapaces. Quite all the specimens are preserved with the complete carapace. After the death of the specimens, the carapaces tend to open in a few hours (Guernet and Lethiers, 1989). This could suggest a rapid burial in the sediments due to a high sedimentation rate. Similar taphonomic characteristics were also found by Pokorny (1964) and Oertli (1971) for pelitic layer associations deposited in basins with extremely rapid distal sedimentation. We compare the results of the Tropites subbullatus/Anatropites spinosus zones (this study), with the data obtained in levels just below in Tropites dilleri zone (Crasquin et al., 2018) (Fig. 9). Through time, the assemblage became more diversified as recorded by the increasing number of families (8 to 12), genera (14 to 18) and species (23 to 36). The percentage of Bairdiidae decreases in favour of two families being absent before, Cytheruridae and Limnocytheridae which include typical genera of nearshore environments such as Simeonella, Mockella and Kerocythere. We observe also the presence of the brackish – hypersaline species Renngartenella sanctaecrusis Kristan-Tolmann, which was suggested by Gerry et al. (1990) to be a stenohaline ostracod.

For Monostori (1994), the dominance of three genera Kerocythere – Renngartenella – Simeonella seems to be a signal of salinity variability. Although these genera are not dominant here, their presence testifies a shallowing of environment from the Tropites dilleri zone to the Tropites subbullatus/Anatropites spinosus zones. The genus Acratia is a typical Palaeozoic form present both in Eifelian (neritic) and Thuringian (deep) mega-assemblages (see synthesis in Crasquin and Horne, 2018). Nevertheless, this genus survived the Permian – Triassic extinction events. In 2013, Crasquin and Forel mentioned the last occurrence of neritic Acratia in the Spathian and of deep marine Acratia in the Anisian (Crasquin-Soleau and Grădinaru, 1996). Since then, some deep marine forms were also found in the Ladinian of Balaton Highland (Monostori and Tóth, 2013), in the Carnian of Turkey (Forel et al., 2017) and Slovenia (Forel et al., 2019b). In 2013, Monostori and Tóth, described Acratiagoemeryi from Ladinian neritic sediments of a borehole in Hungary. Three species of Acratia from the Carnian of Karavanke Mountains, Solvenia, are figured in Forel et al. (2019b). The occurrence of Acratia maugerii in the present material confirms that Acratia occurs in neritic environments of the Carnian.

Conclusion

The palaeoecological interpretation of the sedimentary facies of the Mufara Formation is extremely difficult due to the absence of intact outcrops. The original stratification and the sedimentary structures have been completely destroyed because of continuous agricultural processing of the pelitic soils and their very consistency which determines frequent drifts and landslides. In very few and limited locations parallel laminations and sandy levels were observed. The only useful palaeoecologic data are those obtained from the palaeontological analysis. The results of the ostracod fauna analysis allow the following conclusions:

  • 1. The ostracod assemblage doesn’t yield any evidence of deep marine taxa both at Mt. Scalpello (Crasquin et al., 2018) and at Mt. Gambanera. The Mufara Basin, therefore, can be interpreted as a shallow marine basin (Fig. 10) within the deepest and most distal part of a vast continental shelf where the carbonate platforms Panormide, Trapanese, Saccense were located. The deep marine ostracod fauna discovered recently in the Carnian of Southern Turkey (Forel et al., 2017) or in the South China (Forel et al., 2019a) suggests a deepening of the Neo-Tethys basin towards the more eastern areas.

    Fig. 10

    Palaeogeographic reconstruction of Tethyan (left) and central Mediterranean (right) areas during Late Triassic (after Di Stefano et al., 2015, modified).

    Fig. 10

    Palaeogeographic reconstruction of Tethyan (left) and central Mediterranean (right) areas during Late Triassic (after Di Stefano et al., 2015, modified).

  • 2. The Mufara Basin was a site of rapid and intense sedimentation probably linked to rapid bottom currents which, sometimes, displaced and transported (also in vivo) microfaunas from more superficial neighbouring environments. It is pointed out here that the sediments of the Mufara Basin at Monte Gambanera do not show vortex structures which were recognized in the Mufara Basin at Monte Scapello. This suggests, that the sediment environment of the Mufara Formation outcrops at Monte Gambanera (Fig. 11) was more distal and less turbulent than that of Mt which was effected by strong bottom traction and swirling currents (Crasquin et al., 2018).

    Fig. 11

    Schematic palaeoenvironmental model for the late Carnian Mufara Formation basin (see also Fig. 10).

    Fig. 11

    Schematic palaeoenvironmental model for the late Carnian Mufara Formation basin (see also Fig. 10).

  • 3. According to many authors, the Mufara basin is located in a transitional position between the bathyal Neotethys facies to the south and southeast and the carbonate platforms that surround it (Figs. 10 and 11).

Taxa registration

Acknowledgements

The authors are grateful to the reviewers and the editors for detailed suggestions and comments to the manuscript. Thanks are due to Mr. Alfio Viola (Electronic Microscopy Laboratory, University of Catania) for SEM photos assistance. Catania Palaeoecological Research Group contribution no 456.

We thanks the two reviewers Emőke Tóth from Eötvös Loránd University, Budapest, Hungary and Wolfgang Mette from Innsbruck University, Austria for their fruitful comments to improve our paper.

Palaeoecological Research Group contribution no 456. This research was supported by the University of Catania “Piano della Ricerca 2016/2018 (code no. 227221132118)” and “PiaCeRi – Piano Incentivi per la Ricerca di Ateneo 2020-22 linea di intervento 2”.

Note to the reader: This contribution has been updated on 22 december 2020 to comply with the 2012 Amendment to the International Code of Zoological Nomenclature regarding availability, all newly described taxa have been registered in ZooBank and the registration numbers are added. urn:lsid:zoobank.org:pub:5BB71015-F9DF-4353-A331-208A98705E11

Cite this article as: Crasquin S, Sciuto F, Reitano A, Coco RM. 2020. Late Triassic (Tuvalian – Carnian, Tropites subbullatus/Anatropites spinosus zones) ostracods from Monte Gambanera (Castel di Iudica, Central-Eastern Sicily, Italy), BSGF - Earth Sciences Bulletin 191: 36.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.