This synthesis of the morphological and stratigraphical evolutions of the Marennes-Oléron Bay (west coast of France) combines bathymetric data (1824 and 2003) and very high-resolution seismic profiling groundtruthed by vibracore samples. The Marennes-Oléron Bay is characterised by a very high sedimentation rate and appears to be an ideal place to investigate the sedimentary record of the major environmental changes that occurred since the last several millennia.

The sediment budget of the Marennes-Oléron Bay, between 1824 and 2003, is clearly positive. The flood-dominated northern Marennes-Oléron Bay displays sediment gain in both intertidal and subtidal areas whereas the ebb-dominated southern Marennes-Oléron Bay displays sediment gain restricted to the intertidal area and deepening of subtidal channels. In addition, human influences such as oyster farming may play a role in the sediment gain of the bay.

The sediment-fill of the northern Marennes-Oléron Bay consists of five main phases: (1) lenticular units and flooded intertidal flats recording lower sea level periods before 7500 yr B.P.; (2) tidal channel-fills recording changes in tidal drainage pattern from 7500 to 5000 yr B.P.; (3) a subtidal unit which constitutes the main phase of sediment fill in the northern part of the bay from 5000 to 1500 yr B.P.; (4) a major channelized erosional surface related to huge coastline changes from 1500 to 1000 yr B.P.; and (5) a mud drape emplaced during the last millennia and potentially recording historical human impact (deforestation and land reclamation). The sediment fill of the southern Marennes-Oléron consists of sandbanks, mixed sand-and-mud flats and tidal channels, mainly emplaced under wave-and-tide processes since the last centuries.

Despite its relatively thin (20 m at the maximum), recent and rapid sediment fill, the stratigraphic organization and morphological evolution of the Marennes-Oléron Bay is very complex and spatially variable. Like in many other estuaries, sediment fill of the Marennes-Oléron Bay was successively controlled by relative sea level changes, and then by sediment supply driven by hydrodynamic changes related to huge coastline migrations, and finally by human activities. Moreover, this kind of “rocky coast” estuary, where the sediment-fill is very thin and discontinuous, is characterised by a bedrock control at each phases of the sediment fill both in terms of preservation in topographic lows and in terms of control on hydrodynamics and related sediment input.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.