The late Lower to Middle Permian Panjal Traps (NW Himalaya, India-Pakistan) represent the greatest magmatic province erupted on the northern Indian platform during the Neotethys opening. New geochemical and isotopic analyses were performed on basalts from the eastern borders of the traps (SE Zanskar-NW Spiti area) in order to characterize this volcanism, to discuss its compositional variations in comparison to Panjal counterparts and its relationships with the opening of Neotethys. Lavas show features of tholeiitic low-Ti (< 1.6%) continental flood basalts with LREE, Th enrichments and Nb-Ta negative anomalies. Trace element ratios combined with εNdi values (−3.6 to +0.9) and high Pb isotopic ratios suggest that these tholeiitic basalts were derived from an OIB-like mantle contaminated at various degrees by a continental crust component. Previous geochemical features are broadly similar to those of the coeval Panjal volcanic sequences identified westwards (Ladakh, Kashmir and Pakistan). Present geochemical constraints obtained for the Panjal Traps basalts suggest they originated from rapid effusion of tholeiitic melts during opening of the Neotethys Ocean. Similar magmatism implying an OIB-type reservoir is contemporaneously recognized on and along the adjacent Arabian platform. Both Indian and Arabian Permian volcanics were emplaced during coeval syn-rift to post rift transition. These Lower to Middle Permian south Neotethyan continental flood magmatism are regarded as associated to a passive rifting. In this scheme, OIB-type isotopic signature would be related either to a melting episode of syn-rift up-welling mantle plumes or to a melting of a regional abnormally hot and enriched mantle.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.