The recent sedimentary basins in Central Tunisia correspond to a set of depocenters with complex geometry which are bounded by E-W, N070 and N-S brittle structures. These bordering faults, active during Eocene and Cretaceous times, have been rejuvenated at the end of the Neogene and during Quaternary in a relay pattern system associated with compressive and extensive deformations according to the alternance of extension and compression phases (Tortonian Atlasic Phase of compression, post tectonic top Miocene-early Pleistocene extension associated to the rifting of the Tyrrhenian Basin, and Pleistocene Phase of compression). These tectonic regime changes involve subsidence inversions.

Moreover, the neotectonic study carried out along the strike-slip faults corridories and their associated structures enable us :

  • – to precise the timing of the tectonic deformations ;

  • – to establish tectono-sedimentary relationships of Mio-Plio-Quaternary age.

Introduction : geodynamical context and objectives of the study. – In Central Tunisia as in the whole Maghreb [Piqué et al., 1998 ; Piqué et al., 2002], the Mesozoic and Cenozoic evolution of sedimentary basins is largely controlled by tectonic heredity due to rejuvenation of basement discontinuities. In fact, previous studies have shown that the normal kinematics activity of The Sbiba-Cherichira fault has governed the opening and the distribution of the Cretaceous and the Eocene basins evolving in a globally extensive tectonic regime [Boltenhagen, 1981 ; El Ghali, 1993]. These old tectonics is proven, also, by the interpretation of NNE-SSW seismic profiles through this collapsed zone [Ben Ayed, 1986, fig. 3] and who reveal that subsidence had been active during the Lower Cretaceous and continued up to the Albian.

In the late Miocene and early Quaternary, following the Langhian collision of Sardinia against the Northern Platform of Tunisia [Cohen et al., 1980], the Atlasic and Villafranchian Phases of compression are the most important. They were responsible for the formation of important N040° to N070°E Atlasic folds , N040° to N090°E thrusts , the opening of N120° to N150° E basins parallel to the shortening axis and E-W strike slip fault [Burollet, 1956 ; Ben Ayed, 1986].

In this paper, we present and discuss results of research carried out in the Sbiba-Cherichira area. This research combines interpretation of sedimentological observations and microtectonic or structural field studies [El Ghali et Batik, 1992] carried out along and near the Sbiba-Cherichira faults system, which corresponds to two separated master faults (fig. 2):

  • – the « Southern Sbiba Fault » developed to the west with a direction N090°E which acted as is the southern boundary of the “Sbiba Trough” subsident area as early as the Albian (fig. 3) ;

  • – the “Cherichira Fault” developed to the north-east with a direction N070°E.

These faults are connected by the N040°E Labaied-Trozza Fault.

Tortonian tectonic activity. – During Tortonian compression (orientation of the shortening axis N120°to N140°E) [Burollet, 1956 ; Ben Ayed, 1986 ; Philip et al., 1986 ; Martinez et al., 1990], many transformations were induced in the studied area (fig. 4a). In fact, the E-W faults of Sbiba and the N070 to N90°E faults of Cherichira, disposed in left relay, were reactivated as dextral strike-slip faults inducing simultaneous distensive deformations (normal faults, grabens, half-grabens…) and compressive ones (folds, reverse faults, overlappings….) localised at fracturing extremity [El Ghali, 1993].

Compressive structures. – The brittle structures are associated with ductile deformations of two types :

*The first one corresponds to en echelon folds including :

  • – to the south of the E-W Sbiba Fault, in J. Tiouacha and J. Labaied, Eocene and Neogene strata which are involved in hectometric folds with a N040° to N060°E axial direction (fig. 4a) and an axial westward dip changing from 05° to 60°E ;

  • – to the west of the J. Rebeiba fault, Lutetian and Oligocene to Lower Miocene Strata which are affected by hectometric folds with a N070° to N090°E direction (fig. 4a) and an axial westward dip, changing from 05°to 20°E [El Ghali, 1993].

All these folds are abruptly cut up by the master faults and they can be interpreted as en echelon fault propagation folds.

* The second includes plurikilometric folds parallel to the strike slip faults :

  • – the E-W anticline of J. Labaied due to the transpression responsible for reactivation of the southern Sbiba Fault with a dextral strike slip component (fig. 4a);

  • – the N040°E anticline of J. Trozza and the N070°E anticline of J. Cherichira respectively associated with the Trozza-Labaied fault and the Cherichira fault. Because of their orientation approximatively normal to the shortening axis, these faults are reactivated reversed faults giving fault-bend folds [Suppe, 1983] thrusted to the SE with a decollement level in Triassic evaporites extruded along the fault between J. M’Rhila and J. Cherichira (fig. 4a).

Distensive structures : syntectonic depocenters associated to dextral strike-slip faults. – The dextral strike-slip faults extremities develop as normal faults N140 to N160°E in the dampening zone (fig. 4a). The east and west endings of Sbiba strike slip fault are two distensive extremities the opening mecanism of which is compatible with that of a megasplit basin at a strike-slip extremity [Harding, 1973 ; Odonne, 1981 ; Granier, 1985 ; Faugère et al., 1986…].

Top Miocene to early Pleistocene tectonic activity. – During upper top Miocene and early Pleistocene times, the Sbiba Trough was characterized by a subsidence more important than in any other place in Tunisia and was filled by continental deposits of the Segui Formation (conglomerates, sands, black clays and lacustrine limestones, fig. 5). Subsidence (500m near Haffouz, 3000m in Sbiba Trough, fig. 4b) was controlled by the activity of synsedimentary normal and strike-slip faults, forming small grabens, monoclinal grabens N090° to N130°E trending often cut by the Sbiba Fault (figs. 4b and 7). This extension can be considered as a post-tectonic extension relative to the Atlasic phase of compression, the orientation of the tensile axis being the same.

Pleistocene tectonic activity. – In Central Tunisia, a NNW-SSE compressive phase, intervening in early Quaternary, has been demonstrated out [Burollet, 1956 ; Ben Ayed, 1986 ; Philip et al., 1986]. This “Villafranchian phase” follows distensive strike-slip tectonics of top Miocene Lowermost Pleistocene [El Ghali, 1993] and involves subsidence inversion. This phase is manifested by reverse dextral strike-slip faults on E-W segments (Sbiba and Ain Grab faults, fig. 4c) and by SE vergence overlappings on the NE-SW segments of J. Trozza (fig. 6) and N070°E ones of Cherichira (fig. 8).

In other places the top Miocene-early Pleistocene deposits of the Segui Formation are folded, producing in the Sbiba basin N070° to N090°E en echelon folds (fig. 4c) with westward or eastward axial dipping between 05° and 15°. In Jebel Ain Grab area, the folds are overturned and locally thrusted northwards producing a morphostructural dam. This latter limits to the south a sag filled with fluviatile and lacustrine deposits (fig. 9).

Comparison with neighbouring regions and conclusions. – The Sbiba-Cherichira faults system correspond to an en-echelon strike slip fault inherited from a basement discontinuity. It recorded most of the main tectonic processes which affected the southern margin of the Tethys. In Central Tunisia, this faults system constitutes an evolution model of one of the major scars which affects the sedimentary cover and controls basins distribution and evolution since the Cretaceous to the Quaternary.

* The Tortonian compressional episode corresponding to the Compression Atlasic Phase described from the Rif in Morocco to northern Tunisia [Viguier et al., 1980 ; Philip, 1983 ; Ben Ayed, 1986 ; Morel, 1989 ; Aite, 1995 ; Piqué et al., 2002]. The N120° to N130°E orientation of the shortening axis induced the most important transpression which has triggered the rejuvenation of the Sbiba-Cherichira system as a very active fault driving halokinesis of Triassic evaporites and large development of brittle and folded structures associated to wrench faulting activity as in the eastern platform of Tunisia (fig. 10) [Ellouz, 1984].

* During the top Miocene-early Pleistocene postectonic extension, the rejuvenation of older faults generated a multidirectional extension near the Sbiba-Cherichira faults system as in northern Tunisian platform [Tricart et al., 1994] or in the north-eastern platform and in the strait of Sicily [Bobier et Martin, 1976 ; Ellouz, 1984]. In the Sbiba and Haffouz basins, the multidirectional extension is responsible for the development, along the N070°E dextral strike slip faults and N120°E left lateral strike slip faults, of depocenters for the Segui Formation which is superimposed to Middle Cretaceous subident areas [El Ghali, 1993].

* The Upper-Pleistocene episode which corresponds to the Villafranchian Phase with a N170° to N180°E shortening axis in agreement with the convergence of the European and African Plate and very well documented from the southern margin of Grande Kabilie [Aite, 1995] to northern Tunisia [Ben Ayed, 1986]. Near Sbiba it induced formation of folds, thrusts or reversed faults forming morphostructural dams in which fluvio-lacustrine deposits are accumulated.

You do not currently have access to this article.