The Saint-Gilles breccias, on the western flank of Piton des Neiges volcano, are clearly identified as debris avalanche deposits. A petrographic, textural and structural analysis of the breccias and inter-bedded autochthonous lava flows enables us to distinguish at least four successive flank slides. The oldest deposit sampled the hydrothermally-altered inner parts of the volcano, and has a large volume. Failure was favored by the presence of a deep intensely-weathered layer. The younger deposits are from superficial sources, as their products are rarely hydrothermalized and are more vesicular. The breccia formation, and especially the progressive breaking up occurring during the debris avalanche displacement, indicates the existence of high speed transport. In the Cap La Houssaye coastal area, abrasion and striation of the underlying lava formation, as well as the packing features observed in the breccia, are considered to be deceleration structures.


Huge landslides of volcano flanks, whether or not initiated by magmatic intrusions, have been recognized as catastrophic events since the 1980 Mount St Helens eruption. On oceanic shield volcanoes, the contribution of failure to the edifice-building process was proposed by Moore [1964] and suggested elsewhere for Hawaii [Lipman et al., 1985 ; Moore et al., 1989], Reunion island [Lénat et al., 1989], Etna [McGuire et al., 1991], and Canarias [Carracedo, 1994, 1996 ; Marty et al., 1996]. This contribution is particularly obvious in island volcanoes showing a U-shaped caldera open to the ocean.

Several mechanisms inherent to the causes of failure have been proposed, such as dyke intrusion [McGuire et al., 1990 ; Iverson, 1995 ; Voight and Elsworth, 1997], caldera collapse [Marty et al., 1997], or volcanic spreading [Borgia et al., 1992 ; van Wyk de Vries and Francis, 1997]. Invariably, other factors have been proposed as favorable to volcanic destabilization, such as the probable occurrence of deep low-cohesion layers due to the existence of pyroclastic or hyaloclastic layers [Duffield et al., 1982 ; Siebert, 1984] or an old basement. Gravity spreading models are now frequently proposed to explain the destruction of volcanic edifices [Borgia et al., 1992 ; Merle and Borgia, 1996 ; van Wyk de Vries and Borgia, 1996 ; van Wyk de Vries and Francis, 1997], most of them taking into account basal or intra-volcanic weakness zones. We propose that in such a scenario, density heterogeneity should be an important factor governing the slow evolution of the volcanic pile. Clague and Denlinger [1994] proposed a olivine-rich ductile basal layer that influences the stability of volcano flanks.

On Reunion island, a large volcanic landslide has been proposed to explain the peculiar morphology of Piton de la Fournaise-Grand Brûlé [Vincent and Kieffer, 1978]. Bathymetric surveys [Bachèlery and Montagionni, 1983 ; Lénat et al., 1989, 1990 ; Cochonnat et al., 1990 ; Lénat and Labazuy, 1990 ; Labazuy, 1991 ; Bachèlery, 1995 ; Ollier et al., 1998] have confirmed the offshore occurrence of debris avalanche deposits. Similar deposits are also known to exist along the western, northern and southwestern submarine flanks of the Piton des Neiges volcano. Unlike other deposits showing inland prolongation, “Saint-Gilles breccias” displays a well-preserved and non-weathered texture and structure. Because of striking analogies between the “Saint-Gilles breccias” and, for example, the Cantal stratovolcano debris avalanche deposits [Cantagrel, 1995], we conclude that these formations are the products of repeated avalanches during the Piton des Neiges basaltic period [Bachèlery et al., 1996]. We propose an interpretation of their origin, emplacement mechanism and their role in the evolutionary process of the western flank of Piton des Neiges.

Volcano-structural setting

Mechanical instability of oceanic volcanic edifices generates huge flank landslides, with lateral and mainly submarine transport of sub-aerial materials. These landslides participate in the building of the lower submarine slopes of the volcano. Geophysical surveys have detected low cohesion materials in most offshore Reunion island areas [Malengrau et al., 1999 ; de Voogd et al., 1999 ; Lénat et al., 2001] showing that these materials have largely contributed to the construction of offshore Reunion Island. Such deposits are also found in the inner part (“Cirques”) of Piton des Neiges [Maillot, 1999]. On the other hand, electric and electromagnetic soundings have revealed a deep extending conductor within the Piton de la Fournaise volcanic pile [Courteaud et al., 1997 ; Lenat et al., 2000]. Interpretations about the nature and origin of this conductor depend on its location. In the central caldera zone, as revealed by SP positive anomalies [Malengrau et al., 1994 ; Zlotnicki et al., 1994], the hydrothermal and magmatic complex is probably responsible for the observed low resistivities. Along the flanks, such a hypothesis may not be realistic. Courteaud [1996] suggests the occurrence of a deep argilized layer of volcano-detritic origin. In any case, the hydrothermal complex with high fluid pressures and secondary minerals appears as a potential weak zone that may contribute to the volcano’s instability [Lopez and Williams, 1993 ; Frank, 1995].

Chronology and stratigraphy

Extent of the debris avalanche deposits

The various breccias found at the western end of Reunion island, on the Piton des Neiges volcano flank, cover a 16 km2 area between Cap Marianne and Saint-Gilles (fig. 1). They are overlain upwards (> 250 to 300 m) by trachyandesitic (mugearite) lava flows of Piton des Neiges differentiated series [Billard, 1974]. Some restricted breccia outcrops in deep valleys from Bernica to the north up to l’Hermitage to the south indicate the existence of larger extension of the debris avalanche deposits. Furthermore, breccias with similar “Saint-Gilles” facies appear down the Maïdo cliff to Mafate “Cirque” at an altitude 1300 m, beneath 600 m of mugearite and some olivine basalt flows. Unpublished electromagnetic data (CSAMT soundings) confirm the inland continuity of the “Saint-Gilles breccias” up to the Maïdo along the Piton des Neiges western flank, hidden by mugearitic flows.

Available bathymetric surveys offshore Saint Paul – Saint Gilles areas show the obvious underwater prolongation of “Saint-Gilles breccias” : a shallow depth (< 100 m) plateau followed by a slope with hummocky surface down to 2 500 m depth [Bachèlery et al., 1996 and fig. 2]. From this data, the total surface of “Saint-Gilles” debris avalanche deposits is estimated as more than 500 km2.


A coastal cliff, from Ravine Bernica to Boucan Canot, provides the best outcrop of the northern part of “Saint-Gilles breccias”, with a clear inter-bedding of breccia units and lava formations (photo 1and fig. 3).

  • – The lower breccia unit (Br I), of unknown thickness, has a remarkable friable aspect and a grayish color.

  • – The first autochthonous lava formation (L1) consists in thin pahoehoe olivine basalt flows filling large valleys dug into “Br I”. The top of this formation is striated by the overlying “Br II” unit (photo 2).

  • – Breccia unit “Br II” is interbedded between L1 and L2 olivine basalts. More compact and massive, “Br II” is characterized by a reddish matrix and dark blocks, with many curved fracture surfaces.

  • – On “Br II” or directly on L1, picritic basalt flows L2 are found, filling narrow valleys.

  • – Breccia unit “Br III” lies on “Br II” with a striking sheared contact plane visible along the main road (photo 3). It is a typical debris avalanche deposit with large imbricate blocks within a fine-grained beige matrix.

  • – Once again, basaltic flows of lava formation L3 fill a valley dug into “Br III” near Petite Anse river.

  • – Breccia unit “Br IV” rests on L3 at Petite Anse, but its contact with “Br III” elsewhere is not clear. The facies of this unit is very similar to the “Br III”.

All the breccia units are covered by basaltic and trachyandesitic flows from the end of the Piton des Neiges basaltic series, and differentiated series. In the Saint-Gilles river, two formations are superposed : picritic basalts (L4) have flowed on the “Br IV” breccia unit, latter aphyric trachy-andesitic (mugearite) flows (L6) overlapped L4 and the breccia landforms, reaching in places the coastal area. To the north, at Plateau Caillou, plagioclase-phyric basalt flows (L5) are found between mugearite and breccias. Elsewhere on Piton des Neiges, such flows are symptomatic of the transition from the basaltic series to the differentiated series [Billard, 1974].

The occurrence of autochthonous basaltic formations L1 to L3, inter-bedded with “Saint-Gilles breccias”, enables us to distinguish at least four superposed breccia units. Although the emplacement age of the lower “Br I” is not known precisely, it is overlain and therefore older than Cap Marianne pahoehoe lavas (L1) dated at 0.452 Ma [Mc Dougall, 1971]. On the other hand, the upper breccia units are younger than the pahoehoe olivine basalt at Cap la Houssaye dated at 0,435 Ma but older than L5 plagioclasic basalts dated at 0.35 Ma.

Geological description of the “breccia sequence”

In the synthetic lithologic log (fig. 4) of the Saint-Gilles area, autochthonous lava formations are clearly broken into four separate breccia units.

Lava formations. – L1 formation consists of numerous thin pahoehoe olivine-rich to aphyric basaltic flows. Both L2 and L3 formations are characterized by a few thicker (decametric) olivine (frequently picritic) basalt flows.

Breccia units. All breccia units display common characteristics such as the universal association of two facies (photo 4) : (i) a matrix – sandy to silty – facies containing a non-sorted mixture of non-stratified heterogeneous materials ranging from granular size to blocky elements, (ii) coherent large blocks and large pieces (‘block’ facies) of various lithology such as lava flow, scorias, pyroclastics or other breccias ; blocks displaying frequent “jigsaw” features.

The lower breccia unit “Br 1” (fig. 4) has a more compact but very heterogeneous aspect, with a chaotic distribution of blocks in a less-developed matrix. This unit is characterized by a deep hydrothermal alteration with a lot of zeolites, chlorite, clays, calcite and oxides.

The upper breccia units, “Br II” to “Br IV” (fig. 4) are less heterogeneous than “Br I” because their matrix facies are more voluminous and because the matrix clearly separates the bigger blocks. In both facies, a great diversity of fresh lithologic types such as picritic basalt, olivine-phyric basalt, plagioclase-phyric basalt and aphyric more or less vesicular basalts, gabbro, dunite are found, with no or only few slightly zeolitised blocks.

Plurimetric to metric blocks are severely fractured, disintegrated into millimetric to decimetric angular pieces. The frequent polygenic aspect is due to block juxtaposition or imbrication. The abundant matrix is composed of crushed rocks and mineral elements, fine-grained (< mm), showing frequent fluidity and bedding marks (photo 5). The very heterogeneous composition of the matrix is confirmed at a microscopic scale. On the contrary, cores of blocks appear as jigsaw-puzzle-like monolithologic pieces of various basaltic rocks. At their edges, disintegration leads to progressive mixing with neighboring blocks that feed the matrix.


Originality of “Saint-Gilles breccias”

“Saint-Gilles breccias” constitute one of the few cases [see also Cantagrel et al., 1999] of debris avalanche deposit outcroppings on the sub-aerial part of an oceanic shield volcano. The main part of the deposit is suspected to be offshore. Their hummocky surface in delineating parallel ridges can be compared to the one described offshore the Grand Brûlé area, east of Piton de la Fournaise [Bachèlery et al., 1996]. “Saint-Gilles breccias” were deposited after several Piton des Neiges flank slide events that were separated by basaltic flows. Repeated debris avalanches have also been proposed to explain Piton de la Fournaise offshore deposits [Lenat et al., 1990 ; Labazuy, 1991]. The occurrence of autochthonous interbedded lava formations is essential to interpret the thick piling up of slide material along Reunion volcano flanks as deposits of repeated avalanches at the same place, instead of as being the products of a single huge event.

Many structural and textural features noticed in the upper breccia units reveal crucial information on the emplacement mechanism of debris avalanches. For instance, brecciated blocks are typical of progressive break-up during transport processes. Blocks can simply be fractured, or they can be so severely disintegrated that stretching and mixing with other blocks and matrix formation are observed. The observation of such phenomena implies the existence of numerous percussive events between rocks, as well as internal vibrations in the debris avalanche and therefore the existence of high-speed transport.

Lava formations L1 underlying upper breccia units are truncated and strongly striated in a seaward direction (photo 2), parallel to the breccia morphological ridges. In the same way, internal contact surfaces between upper breccia units are shear planes underlain by cataclastic layers and lenses (photo 3). Such structures are interpreted as due to drastic deceleration effects of avalanches reaching a topographic leveling out in the coastal area. This concords with the occurrence of sub-vertical contact areas between the blocks and the matrix. These injections of matrix between the blocks are generated bottom-up from the shear plane at the moment of the sudden deceleration of the avalanche. Other fracture planes that are in accordance with the morphology of ridges, are found in “Br III” unit (see fig. 5). They are interpreted as the result of packing effects.

Origin of flank failures

Although the source area of breccia formations has not yet been clearly identified, it has to be in the central part of Piton des Neiges as seen in the western cliff of “cirque de Mafate”. Furthermore, “Br I” deeply weathered materials evidently come from the hydrothermalized core of the volcano. Though the “Br I” thickness is not known, the volume involved may be considerable and a part of this volume must constitute the main body of Saint-Gilles offshore deposits.

The upper breccias units “Br II” to “Br IV” display very similar textures and lithologies, with dominant non-altered basaltic rocks from the “Phase II” building stage of Piton des Neiges [Billard, 1974]. These units are very thin in the coastal area of Cap La Houssaye (see fig. 2) despite a proximal facies (meaning a deposit in the transport zone nearer than the main deposit zone). They obviously originate from shallow flank slides of restricted extent. We suggest that the upper Saint-Gilles deposits are due to repeated events that produced thin high-speed debris avalanches.

Emplacement modalities

The morphology of “Saint-Gilles breccias”, or submarine deposits offshore Grand Brûlé (east of Piton de la Fournaise volcano), are typical of sliding movements along shallow depth shear planes (several hundred meters up to two kilometers) within the volcanic pile. But several levels of decollement are suggested by seismic refraction and reflection profiles offshore La Reunion, the deepest corresponding to the top of the preexisting oceanic sediments [de Voogt et al., 1999].

Until now, in Reunion Island, only shallow failures affecting the upper parts of volcanic edifices, with deposits on the lower slopes, have been positively identified. Conditions that trigger giant flank landslides affecting oceanic shields remain poorly understood but we can reasonably speculate that weak hydrothermally-altered layers in the inner part of the volcano favor these gravity-driven processes related to repeated dike injections. The “Saint-Gilles breccia” sequence is considered as a multiphase lateral collapse structure whose first event (“Br I”) was apparently the most voluminous. The corresponding deposit displays frequent hydrothermally-altered material symptomatic of originating from the Piton des Neiges core. Within Piton des Neiges, the low cohesive weathered layer is quite extensive [Nativel, 1978 ; Rançon, 1982] possibly reaching down the volcano flanks [Courteaud et al., 1997]. The interpretative scheme that we propose (fig. 6) in our evaluation of the conditions for the emplacement of Saint-Gilles sequence, takes into account the existence of such a mechanical discontinuity within the volcanic pile. We propose that the massive landslide failure of the west flank of Piton des Neiges volcano that produced the “Br I” breccia, provided efficient channels for younger Piton des Neiges lavas to reach the western and southwestern coastline. Morphological features, as well as radiometric data [Mc Dougall, 1971 ; Gillot and Nativel, 1982] and magnetic surveys [Lénat et al., 2001], yield evidence for preferential accumulation of lava during the last 0.5 m.y. (corresponding mainly to the differentiated series) in this part of the volcano. The relative asymmetry of Piton des Neiges was acquired by rift migration in response to the first huge landslide that produced the “Br I” unit of “Saint-Gilles breccia”, in the manner described by Lipman et al. [1990] for Mauna Loa volcano in Hawaii.

The later repetition of flank collapses is consistent with similar structures on other oceanic islands. Since the first lateral collapse, the Piton des Neiges edifice was probably characterized by the existence of an asymmetrical steeper western flank where the old zeolite-rich “Br I” deposits possibly act as a detachment surface for later successive landslides which may have occurred recurrently over a short time interval.

You do not currently have access to this article.