Premortem and postmortem processes significantly influence the formation of the molluscan fossil record in freshwater environments. Despite their importance for paleoenvironmental studies, they remain poorly understood. In Pampean shallow lakes, Holocene shell deposits of the euryhaline snail Heleobia parchappii show a relation with salinity, as preservation seems to be favored by brackish-saline water conditions. To explore if this pattern may respond to ecological (i.e., differential survival and reproduction) or taphonomic processes acting differently in freshwater and brackish-saline environments, we conducted a field-based study comparing premortem (abundance, length, width/length ratio, and crushing resistance in living and dead shells) and postmortem (fragmentation, fine-scale surface alteration, and loss of periostracum of dead shells) attributes along a modern lacustrine salinity gradient (0.5–40 ppt) in the Pampa plain of Argentina. Snails from saline lakes were smaller and more rotund than those from freshwater lakes, exhibiting higher abundances and resistances in death assemblages. They showed the highest fidelity in shell length and the best states of preservation, which were similar to values recorded in fossil shells. We concluded that shells deposited in saline lakes are better preserved than those deposited in freshwater lakes, giving rise to highly abundant shell concentrations, analogues to those shell-rich fossil levels recorded in Pampean lakes. Such abundance does not reflect the natural abundances of living snails, but rather is the result of the combined influence that less destructive environments and better shell intrinsic properties have on preservation.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.