The late Paleozoic transition is well represented by the upper Pennsylvanian to lower Permian Conemaugh, Monongahela, and Dunkard groups of the western Appalachian Basin (U.S.A.). These units contain abundant paleosols possessing suites of ichnofossils that serve as indicators of soil moisture, soil organic content, water table level, precipitation, and landscape stability. Analysis of these units can, therefore, be used to refine the details of how late Paleozoic terrestrial landscapes changed through time. A study along a 50 km west-east and a 40 km north-south transect through southeast Ohio and southwest West Virginia resulted in the recognition of 24 pedotypes with distinct ichnofossil assemblages. Ichnofossils include rhizoliths, Planolites, Palaeophycus, Taenidium, Scoyenia, Macanopsis, Skolithos, Cylindricum, cf. Psilonichnus, Arenicolites, mottles, and coprolites produced by various plants, gastropods, and larval-to-adult soil arthropods. Soil-forming environments include palustrine, levee, proximal to distal floodplain, interfluve, backswamp, marsh, and fen settings. An up-section shift in pedotypes from Argillisols to Vertisols and Calcisols as well as an overall increase in the diversity of pedotypes recorded a change in soil-forming conditions, resulting in a diverse landscape that changed significantly as mean annual precipitation rose and fell. An up-section increase in ichnofossil diversity in the paleosols and changes in ichnocoenoses suggests an increased dependence on the soil as a refuge and as a food resource. Overall, growing instability of the climate during the Pennsylvanian–Permian transition led to a more heterogeneous landscape that helped to promote colonization of a more diverse assemblage of soil organisms.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.