ABSTRACT

Throughout their long history, trilobites occupied various ecological niches, colonizing a wide variety of marine environments. However, the paleoecology of this group is mostly based on shelf–slope environments and less is known about their distribution in marginal environments. To understand how trilobite communities respond to a deltaic influence, we studied changes in the taxonomic composition and structure of a diverse and well-known Lower Ordovician olenid-dominated fauna from the Argentine Cordillera Oriental along a delta–marine gradient. Cluster analysis revealed two distinct associations, and ordination analysis revealed a clear biotic gradient within each. The ecological structure and diversity trends of both associations follow a predictable response to a depth-related gradient. Impoverished communities with a highly nested structure characterize the lower offshore, whereas rich and even communities occur in the upper offshore. The trend towards higher diversity and greater taxonomic turnover in shallower environments corresponds to greater habitat heterogeneity. Towards the other extreme, only the ubiquitous genus Jujuyaspis was a successful colonizer in deltaic settings. This marked contrast with the more diverse and abundant assemblages of fully marine deposits indicates stressful physiological conditions in marginal-marine environments, where alternating and contrasting normal-marine to brackish-water conditions and high input of siliciclastic material were among the key factors controlling the distribution of these early trilobite communities.

You do not currently have access to this article.