This paper presents the results of a paleoenvironmental study of two Hauterivian–Aptian adjacent sections (Transnordestina A/B) of the Iguatu Basin using ostracods and aided by X-ray fluorescence (XRF), total organic carbon (TOC), total sulfur (S), and spectral analyses. Cluster analysis divided the 10 genera found into two main groups: one composed of Alicenula-Pattersoncypris?-Brasacypris-Hastacypris-Ilyocypris?, and the second composed of Cypridea-Looneyellopsis-Rhinocypris?. The first group is interpreted as representing paleoenvironments with permanent waterbodies, such as lakes, and the second as being indicative of ephemeral settings, such as temporary pools in an inundation plain. XRF analysis using the positive peaks of Ca/Ti and Ca/ΣTi, Fe, Al ratios show a few dry periods, particularly in the lower and middle part of Transnordestina A, between 0 to 175 m and 385 to 475 m, which also display a small number of ostracods. Total S shows several high peaks which might be indicative of gypsum deposition during droughts. Spectral analysis of molar Ti/Al ratio shows two intervals with different sedimentation rates, between 0 and 233 m, and 233 to 836 m. For the first interval, six 100 ka eccentricity cycles were identified; the low number of ostracods for the interval and highly variable Ca/Ti and Ca/ΣTi, Fe, Al values indicate a different sedimentation rate in a drier environment. For the second interval, ten 405 ka cycles were identified; its higher ostracod count and more stable Ca/Ti and Ca/ΣTi, Fe, Al values could be indicative of increasing humidity.

You do not currently have access to this article.