The Cretaceous coastal plain of Arctic Alaska contains the richest concentration of high-latitude dinosaurs on Earth. Three bonebeds (Liscomb, Byers, Sling Point) are found in paleopolar (82°–85° N) coastal-plain deposits of the Prince Creek Formation on Alaska's North Slope. 40Ar/39Ar analysis of a tuff below the oldest bonebed (Sling Point) returned an age of 69.2 ± 0.5 Ma indicating a maximum early Maastrichtian age for these bonebeds. Bonebeds are overwhelmingly dominated by partially articulated to associated late-stage juvenile Edmontosaurus sp. Bone is rarely found in channels; instead high-density accumulations are preserved on floodplains in laterally extensive, muddy alluvium. Bone size grading is vertically nonuniform and most bones are in hydraulic disequilibrium with the surrounding clay-rich matrix. Bones exhibit little evidence of rounding, weathering, predation, or trampling, suggesting short-distance transport and rapid burial. Because these bonebeds are unlike typical debris-flow or streamflow deposits, the mechanism for bonebed emplacement remained poorly understood. All bonebeds contain a current-rippled siltstone containing the largest bone overlain by a distinctive mudstone encasing smaller bones, bone fragments, and subparallel-aligned plant fragments that appear “frozen in flow” within the muddy matrix. We recognize that these bonebeds exhibit a recurring facies pairing and bipartite division of flow consistent with deposition by fine-grained viscous hyperconcentrated flows. We suggest that exceptional discharge events entrained mud and ash stored on point bars and floodplains, increasing suspended-sediment concentrations in rivers and generating erosive hyperconcentrated flows that transported the remains of scores of juvenile dinosaurs onto floodplains adjacent to distributary channels.

You do not currently have access to this article.