Abstract

The presence, distribution, and preservation of coral-rich facies in the lower Oligocene Gornji Grad Beds of Slovenia are analyzed using a microtaphofacies approach. This method allows taphonomic signatures to be recognized in thin section along with the presence of coral specimens and growth forms within and between stratigraphic logs. Coral-dominated limestones within the Gornji Grad Beds are represented by rudstones in a packstone-wackestone matrix. The conditions are generally reconstructed as turbid water due to the prevalence of muddy carbonate matrix, which also leads to excellently preserved morphological features in thin section. These beds represent a reference area for the study of Paleogene corals, especially during the Oligocene, a key phase of reef development during the Cenozoic. This study also contributes to the characterization of fossil reefs in turbid-water environments. The evaluated coral fauna is dominated by delicate-branching Stylophora and Acropora, although thickly branching (Actinacis, Goniopora), phaceloid (Caulastrea), and massive forms (Alveopora, Astreopora, Antiguastrea) also occur. Assessed taphonomic signatures include fragmentation, abrasion, bioerosion, and encrustation. Three types of bioerosion traces are distinguished (Entobia, Gastrochoenolites, Trypanites). Encrustation incl udes both thin crusts and complex multi-taxon sequences dominated by coralline algae. Five microtaphofacies are distinguished based on variation of taphonomic signatures, taxonomic composition, and growth forms. Differences in microtaphofacies are interpreted with respect to turbidity, sediment accumulation, and water turbulence; both parautochthonous and allochthonous deposits are reconstructed. A depositional model based on the distribution of microtaphofacies in the studied sections shows a succession of coral communities with different colonization strategies reflecting generally high stress levels.

You do not currently have access to this article.