We present the first continuous, high-resolution record of Mg/Ca variations within an encrusting coralline red alga, Clathromorphum nereostratum, from Amchitka Island, Aleutian Islands. Mg/Ca ratios of individual growth increments were analyzed by measuring a single-point, electron-microprobe transect, yielding a resolution of ∼15 samples/year and a 65-year record (1902–1967) of variations. Results show that Mg/Ca ratios in the high-Mg calcite algal framework display pronounced annual cyclicity and archive late spring–late fall sea-surface temperatures (SST) corresponding to the main season of algal growth. Mg/Ca values correlate well to local SST, as well as to an air temperature record from the same region. High spatial correlation to large-scale SST variability in the subarctic North Pacific is observed, with patterns of strongest correlation following the direction of major oceanographic features that play a key role in the exchange of water masses between the North Pacific and the Bering Sea. Our data correlate well with a shorter Mg/Ca record from a second site, corroborating the ability of the alga to reliably record regional environmental signals. In addition, Mg/Ca ratios relate well to a 29-year δ18O time series measured on the same sample, providing additional support for the use of Mg in coralline red algae as a paleotemperature proxy that, unlike algal-δ18O, is not influenced by salinity fluctuations. Moreover, electron microprobe–based analysis enables higher sampling resolution and faster analysis, thus providing a promising approach for future studies of longer C. nereostratum records and applications to other coralline species.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.