Abstract

Ecological studies have revealed that the functional roles of dominant species in modern communities are often more important than overall diversity in governing community composition and functioning. Despite this recognition that abundance and diversity data are both required for a complete understanding of ecological processes, many paleoecological studies focus on presence-absence data, possibly because of concerns regarding the taphonomic fidelity of time-averaged fossil accumulations. However, the abundance of organisms in shell beds has been shown to provide a fairly accurate record of the living community, suggesting that the benefits of relative-abundance data should be reconsidered. Recognition of ecologically dominant species in local fossil assemblages should be based on counts of relative abundance and assessment of ecological role. Ecological dominance at larger spatial or temporal scales can be quantified using the mean rank order of a clade and the proportion of assemblages where the clade is present, providing unbiased, quantitative values for measuring the ecological importance of a clade. Their utility has been tested with three case studies encompassing a range of geographic and taxonomic scales, using a database of 1221 Ordovician–Paleogene quantitative fossil collections. The dominance metrics for rhynchonelliform brachiopods, bivalves, and gastropods broadly parallel anecdotal trends, even including some more detailed patterns documented by regional studies. An examination of substrate preferences for brachiopod and bivalve orders confirms the abundance of infaunal bivalves in siliciclastics and epifaunal bivalves in carbonates, but it also reveals intriguing patterns regarding substrate preferences among rhynchonelliform brachiopod orders. The final case study analyzed changes in dominance between early Mesozoic fossil assemblages from Tethys and Panthalassa, documenting significant geographic differences in the ecological importance of rhynchonelliform brachiopods and bivalves. These large-scale dominance patterns often approximately matched those inferred from diversity trends; however, there are also times when dominance was decoupled from diversity, indicating that further investigation of ecological dominance will provide additional insights into ecological influences on the Phanerozoic history of life.

“Are most species simply passengers in ecosystems that are run basically by a few dominants?” (Worm and Duffy, 2003, p. 631)

You do not currently have access to this article.