ABSTRACT
Plio-Pleistocene sediments from the southwestern Florida Peninsula contain an extraordinary density and diversity of marine mollusk and vertebrate fossils which, collectively, document major faunal shifts on the Florida Platform through a period of profound environmental change. Systematic study of these fossil assemblages and the environments in which they lived has been limited, however, by: i) a lack of outcrop sections spanning the full Plio-Pleistocene stratigraphy of the region and ii) major uncertainties in correlation between previous study sites due to extreme lateral variability in coastal paleoenvironments. Here, we describe a new stratigraphic section from Florida Shell Quarry in Charlotte County, Florida, which contains fossil-rich deposits of each major Plio-Pleistocene unit in the area (the Tamiami, Caloosahatchee, Bermont, and Fort Thompson formations). Bulk sediment samples collected from 22 horizons were used to broadly characterize stratigraphic variations in lithology and faunal content. Predation intensity was estimated from drill-hole frequency among populations of the bivalve Chione spp. While all studied formations were mainly deposited under marine conditions, both lithologic and faunal facies shifts within the Caloosahatchee and Bermont units indicate periods of pronounced freshwater influence. Faunal diversity is relatively high in the Tamiami, Caloosahatchee, and Bermont units but declines in the Fort Thompson. Similarly, predation intensity is high in the Caloosahatchee and Bermont units but lower in the Fort Thompson at the sampled sites. In addition to characterizing changes in the local paleoenvironment, we propose a sequence stratigraphic model for the section based on inferred local sea-level fluctuations. We leverage this sequence stratigraphic framework to correlate the Florida Shell section with other studied sections in the Charlotte Harbor area. The development of this new site provides a workable basis for more detailed studies of the long-term paleoecological and paleoenvironmental evolution of southwestern Florida.