In the Jaca foreland basin (southern Pyrenees), two main sediment routing systems merge from the late Eocene to the early Miocene, providing an excellent example of interaction of different source areas with distinct petrographic signatures. An axially drained fluvial system, with its source area located in the eastern Central Pyrenees, is progressively replaced by a transverse-drained system that leads to the recycling of the older turbiditic foredeep. Aiming to provide new insights into the source-area evolution of the Jaca foreland basin, we provide new data on heavy-mineral suites, from the turbiditic underfilled stage to the youngest alluvial-fan systems of the Jaca basin, and integrate the heavy-mineral signatures with available sandstone petrography. Our results show a dominance of the ultrastable Ap-Zrn-Tur-Rt assemblage through the entire basin evolution. However, a late alluvial sedimentation stage brings an increase in other more unstable heavy minerals, pointing to specific source areas belonging to the Axial and the North Pyrenean Zone and providing new insights into the response of the heavy-mineral suites to sediment recycling. Furthermore, we assess the degree of diagenetic overprint vs. provenance signals and infer that the loss of unstable heavy minerals due intrastratal dissolution is negligible at least in the Peña Oroel and San Juan de la Peña sections. Finally, we provide new evidence to the idea that during the late Eocene the water divide of the transverse drainage system was located in the North Pyrenean Zone, and areas constituted by the Paleozoic basement were exposed in the west-Central Pyrenees at that time. Our findings provide new insights into the heavy-mineral response in recycled foreland basins adjacent to fold-and-thrust belts.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.