Straight channels are ubiquitous in deep-water settings, yet flow dynamics and sedimentation in them are far from being well understood. Stratigraphy and flow dynamics of a middle to late Miocene straight channel in Qiongdongnan Basin were quantified, in terms of angle of channel-complex-growth trajectories (Tc), stratigraphic mobility number (M), Froude number (Fr), layer-averaged flow velocity (U), flow thickness (h), and water entrainment coefficient (Ew). The documented channels are composed of three channel complexes (CC1 to CC3) all of which are all characterized by symmetrical channel cross sections without levees and by organized vertical channel-stacking patterns (represented by high mean value of Tc = 37.4° and low mean value of M = 0.038). Turbidity currents in them were estimated to have U of 1.6 to 2.0 m/s (averaging 1.8 m/s), h of 63 to 89 m (averaging 78), Fr of 0.849 to 0.999 (averaging 0.912), and Ew of 0.0003 to 0.0005. They were, in most case, subcritical over most of the channel length, and had a low degree of water entrainment and low flow height scaled to the channel depth (i.e., 0.786 to 0.81 of the channel depth), most likely inhibiting the gradual loss of sediment to form levees. With reference to modeling results of secondary flow velocity vectors of numerical straight channels with the same sinuosity, two parallel gullies seen on both sides of the interpreted channel beds are interpreted to be induced by high-velocity downward backflows produced by the negative buoyancy. Such symmetrical secondary flow structures most likely promoted symmetrical intrachannel deposition (i.e., less deposition along both channel margins but more deposition near the channel center), and thus forced individual channel complexes to progressively aggrade in a synchronous manner, forming straight-channel complexes with symmetrical channel cross sections and organized vertical channel-stacking patterns.

You do not currently have access to this article.