Previous studies on dilute, multi-pulsed, subaqueous saline flows have demonstrated that pulses will inevitably advect forwards to merge with the flow front. On the assumption that pulse merging occurs in natural-scale turbidity currents, it was suggested that multi-pulsed turbidites that display vertical cycles of coarsening and fining would transition laterally to single-pulsed, normally graded turbidites beyond the point of pulse merging. In this study, experiments of dilute, single- and multi-pulsed sediment-bearing flows (turbidity currents) are conducted to test the linkages between downstream flow evolution and associated deposit structure. Experimental data confirm that pulse merging occurs in laboratory-scale turbidity currents. However, only a weak correspondence was seen between longitudinal variations in the internal flow dynamics and the vertical structure of deposits; multi-pulsed deposits were documented, but transitioned to single-pulsed deposits before the pulse merging point. This early transition is attributed to rapid sedimentation-related depletion of the coarser-grained suspended fraction in the laboratory setting, whose absence may have prevented the distal development of multi-pulsed deposits; this factor complicates estimation of the transition point in natural-scale turbidite systems.

You do not currently have access to this article.