Black, organic-rich rocks of the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, a world-class petroleum source rock in the Williston Basin of the United States and Canada, contain a diverse suite of mudstone lithofacies that were deposited in distinct facies belts. The succession consists of three discrete facies associations (FAs). These comprise: 1) siliceous mudstones; 2) quartz- and carbonate-bearing, laminated mudstones; and 3) macrofossil-debris-bearing massive mudstones. These FAs were deposited in three facies belts that reflect proximal to distal relationships in this mudstone system. The macrofossil-debris-bearing massive mudstones (FA 3) occur in the proximal facies belt and contain erosion surfaces, some with overlying conodont and phosphate–lithoclast lag deposits, mudstones with abundant millimeter-scale siltstone laminae showing irregular lateral thickness changes, and shell debris. In the medial facies belt, quartz- and carbonate-bearing, laminated mudstones dominate, exhibiting sub-millimeter-thick siltstone layers with variable lateral thicknesses and localized mudstone ripples. In the distal siliceous mudstone facies belt, radiolarites, radiolarian-bearing mudstones, and quartz- and carbonate-bearing, laminated mudstones dominate. Overall, total organic carbon (TOC) contents range between about 3 and 10 wt %, with a general proximal to distal decrease in TOC content. Abundant evidence of bioturbation exists in all FAs, and the lithological and TOC variations are paralleled by changes in burrowing style and trace-fossil abundance. While two horizontal traces and two types of fecal strings are recognized in the proximal facies belt, only a single horizontal trace fossil and one type of fecal string characterize mudstones in the distal facies belt. Radiolarites intercalated into the most distal mudstones are devoid of traces and fecal strings.

Bedload transport processes, likely caused by storm-induced turbidity currents, were active across all facies belts. Suspended sediment settling from near the ocean surface, however, most likely played a role in the deposition of some of the mudstones, and was probably responsible for deposition of the radiolarites. The distribution pattern of high-TOC sediments in proximal and lower-TOC deposits in some distal facies is interpreted as a function of higher accumulation rates during radiolarian depositional events leading to a decrease in suspension-derived organic carbon in radiolarite laminae. The presence of burrows in all FAs and nearly all facies in the upper Bakken shale member indicates that dysoxic conditions prevailed during its deposition. This study shows that in intracratonic high-TOC mudstone successions such as the upper Bakken shale member bed-load processes most likely dominated sedimentation, and conditions promoted a thriving infaunal benthic community. As such, deposition of the upper Bakken shale member through dynamic processes in an overall dysoxic environment represents an alternative to conventional anoxic depositional models for world-class source rocks.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.