Clinoforms produced where sand-bed rivers flow into lakes and reservoirs often do not form Gilbert deltas prograding at or near the angle of repose. The maximum slope of the sandy foreset in Lake Mead, for example, is slightly below 1°. Most sand-bed rivers also carry copious amounts of mud as wash load. The muddy water often plunges over the sandy foreset and then overrides it as a muddy turbidity current. It is hypothesized here that a muddy turbidity current overriding a sandy foreset can substantially reduce the foreset angle. An experiment reveals a reduction of foreset angle of 20 percent due to an overriding turbidity current. Scale-up to field dimensions using densimetric Froude similarity indicates that the angle can be reduced to as low as 1° by this mechanism. The process of angle reduction is self-limiting in that a successively lower foreset angle pushes the plunge point successively farther out, so mitigating further reduction in foreset angle.

You do not currently have access to this article.