The transition from linguoid ripples to upper-stage plane bed under steady, uniform flow conditions in very fine sand (D 50 = 0.108 mm) was studied quantitatively using a flume. The transitional ripples, referred to as washed-out ripples, are symmetrical to slightly asymmetrical bed forms with a convex-up profile and low-angle foresets in the direction of the main flow. The washed-out ripples are stable between 10 degrees C-equivalent depth-averaged flow velocities of 0.75 m/s and 0.91 m/s. With increasing velocity in this range the 10 degrees C-equivalent average equilibrium height of the bed forms decreases from 12 mm to zero, the 10 degrees C-equivalent average equilibrium spacing decreases slightly from 138 mm to 103 mm, and the 10 degrees C-equivalent average migration rate increases from 1 mm/s to 3 mm/s. The changes in morphology and migration rate with increasing flow velocity from linguoid ripples to washed-out ripples result from a spatial shift of the locus of maximum sediment flux from the bed-form crest to the downstream wake region. The shift follows the increasing concentration of sediment particles in a near-bed traction carpet above the sediment surface. With increasing flow velocity the volumetric suspended sediment concentration at 0.01 m above ripple crests increases from 0.9% at the lower boundary to 1.6% at the upper boundary of the washed-out-ripple stability field.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.