Abstract

The nature and organization of facies within incised-valley estuaries is controlled by the interplay between marine processes (waves and tides), which generally decrease in intensity up-estuary, and fluvial processes, which decrease in strength down-estuary. All estuaries ideally possess a three-fold (tripartite) structure: an outer, marine-dominated portion where the net bedload transport is headward; a relatively low-energy central zone where there is net bedload convergence; and an inner, river-dominated (but marine-influenced) part where the net transport is seaward. These three zones are not equally developed in all estuaries because of such factors as sediment availability, coastal zone gradient and the stage of estuary evolution. Two distinct but intergradational types of estuaries (wave- and tide-dominated) are recognized on the basis of the dominant marine process. Wave-dominated estuaries typically possess a well-defined tripartite zonation: a marine sand body comprised of barrier, washover, tidal inlet and tidal delta deposits; a fine-grained (generally muddy) central basin; and a bay-head delta that experiences tidal and/or salt-water influence. The marine sand body in tide-dominated estuaries consists of elongate sand bars and broad sand flats that pass headward into a low-sinuosity ("straight") single channel; net sand transport is headward in these areas. The equivalent of the central basin consists of a zone of tight meanders where bedload transport by flood-tidal and river currents is equal in the long term, while the inner, river-dominated zone has a single, low-sinuosity ("straight") channel. These facies models and their conceptual basis provide a practical means of highlighting the differences and similarities between estuaries. They also allow the predication of the stratigraphy of estuarine deposits within a sequence-stratigraphic context.

First Page Preview

First page PDF preview
You do not currently have access to this article.