Fractions composed of grains having uniform fall velocity (equivalent to 2 phi quartz) were extracted from beach sands collected along the eastern end of Lake Ontario, New York. Heavy-liquid separations and point counts were performed on these fall-equivalent velocity splits to obtain relative abundances of hornblende, augite, hypersthene, garnet, magnetite, and quartz-density lights. Heavy minerals decrease in abundance in the direction of transport, and the degree to which any particular mineral lags behind another lighter mineral is a simple function of the mineral's effective-density ratio. Our results appear to confirm that heavy minerals are less transportable than fall-equivalent lights, an effect that may result from differential entrainability, transport within different zones of the beach, or both.

First Page Preview

First page PDF preview
You do not currently have access to this article.