Skip to Main Content
Skip Nav Destination

Following its middle Miocene inception, numerous basins of varying lengths and depths developed along the Dead Sea fault zone, a large continental transform plate boundary. The modern day left-lateral fault zone has an accumulated left-lateral offset of 105 to 110 km (65 to 68 mi). The deepest basin along the fault zone, the Lake Lisan or Dead Sea basin, reaches depths of 7.5 to 8.5 km (24,500 ft to 28,000 ft), and shows evidence of hydrocarbons. The basins are compartmentalized by normal faulting associated with rapid basin subsidence and, where present, domal uplift accompanying synrift salt withdrawal.

The stratigraphy of the fault zone is composed of a thick pre-wrench interval of early Tertiary to Precambrian strata overlain by a syn-wrench section of Miocene to Recent sediments. The main potential source rock is the pre-wrench Cretaceous Maastrichtian Ghareb Formation (and equivalents), which has a total organic carbon (TOC) content measurement of 8 to 18%. Lesser potential source rocks may also be found in the Pleistocene, Cretaceous (Turonian), Jurassic (Oxfordian–Callovian), and Triassic (Ladinian–Carnian).

Geochemical analyses indicate that the source of all oils, asphalts, and tars recovered in the Lake Lisan basin is the Ghareb Formation. Geothermal gradients along the Dead Sea fault zone vary from basin to basin. Syn-wrench potential reservoir rocks are highly porous and permeable, whereas pre-wrench strata commonly exhibit lower porosity and permeability. Biogenic gas has been produced from Pleistocene reservoirs. Potential sealing intervals may be present in Neogene evaporites and tight lacustrine limestones and shales. Simple structural traps are not evident; however, subsalt traps may exist. Unconventional source rock reservoir potential has not been tested.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal