Application of the Principles of Seismic Geomorphology to Continental Slope and Base-of-Slope Systems: Case Studies from SeaFloor and Near-Sea Floor Analogues
The study of near-seafloor deepwater landscapes and the processes that form them are as important to the understanding of deeply buried marine depositional systems as the study of modern fluvial environments is to our understanding of ancient terrestrial depositional systems. In fact, these near-seafloor studies follow in the great tradition established by earlier clastic sedimentologists in the use of modern systems to understand ancient environments. The acquisition and mapping of exploration 3D seismic surveys over the last few decades allows for the study of seafloor geomorphology with a spatial resolution comparable to most deepwater multibeam bathymetric tools, and represents a significant advancement that can be used to push forward general understanding of slope and base-of-slope depositional systems through the application of the emerging science of seismic geomorphology. The papers assembled for this volume demonstrate the utility of seafloor-to-shallow subsurface data sets in studying the development of submarine landscapes and their affiliated sedimentary deposits. These contributions highlight the controls of slope morphology on patterns of both sedimentation and erosion. Many of the papers also highlight the influence of pre-existing seafloor relief on confining sediment-gravity flows specific transport pathways, thereby affecting subsequent evolution of the seafloor. The understanding of depositional processes that comes from studying deepwater analogue systems remains the best way take to knowledge from one basin or system and apply confidently to another for prediction and characterization of reservoirs for exploration and production of hydrocarbons.
Pleistocene Seascape Evolution Above A “Simple” Stepped Slope—Western Niger Delta
-
Published:January 01, 2012
-
CiteCitation
Mark E. Deptuck, Zoltán Sylvester, Ciaran O’byrne, 2012. "Pleistocene Seascape Evolution Above A “Simple” Stepped Slope—Western Niger Delta", Application of the Principles of Seismic Geomorphology to Continental Slope and Base-of-Slope Systems: Case Studies from SeaFloor and Near-Sea Floor Analogues, Bradford E. Prather, Mark E. Deptuck, David Mohrig, Berend Van Hoorn, Russell B. Wynn
Download citation file:
- Share
Abstract
The morphology of a 1250 km2 portion of the middle slope off the western Niger Delta shows that gradients on the Pleistocene slope vary both spatially and at different stratigraphic levels. In the deeper section, three lower-gradient steps are connected by three higher-gradient ramps, generating a stepped-slope morphology. Through time, preferential accumulation of slope aprons, composed of mass-transport deposits, compensationally stacked lobes, and overbank deposits (wedge-shaped outer levees), helped fill slope accommodation, smoothing over the gradient change across ramps and steps, and vice versa. Consequently at the local scale, the stepped slope evolved into a smoother slope that is nearly graded at the modern seafloor. As in other studies, preferential accumulation of sediment on the slope is believed to reflect in part the deceleration of sediment gravity flows (both turbidity currents and debris flows) as they encountered lower-gradient steps.
Down-slope changes in slope morphology also caused variations in the amount, and presumably rate, of erosion along the axes of canyons in the study area—with increased incision depth where knickpoints cut through positive-relief bathymetric structures in an attempt to establish a graded profile. Along the Benin-major Canyon there is an inverse linear relationship between the thickness of deposits that accumulate on the slope adjacent to the canyon and the amount of vertical erosion along its axis. The thickest outer levee deposits coincide with canyon segments that have the shallowest incision, in turn corresponding to slope segments showing a sharp decrease in pre-incision gradient. This implies that the increase in sediment flux to outer levees on some parts of the stepped slope results from a combination of increased overspill from flows passing through shallower canyon reaches, and increased sedimentation caused as mud-dominated flows decelerated on lower-gradient slope segments immediately adjacent to the canyon. Thus there appears to be an intimate relationship between slope morphology, canyon incision depth, and the thickness of overbank deposits adjacent to canyons.
- Amazon Fan
- Amazon River
- Atlantic Ocean
- Cenozoic
- clastic sediments
- clay
- depositional environment
- diapirs
- Equatorial Atlantic
- geophysical methods
- geophysical profiles
- geophysical surveys
- Leg 155
- mass movements
- North Atlantic
- Ocean Drilling Program
- Pleistocene
- Quaternary
- reflection methods
- sedimentation
- sediments
- seismic methods
- seismic profiles
- South America
- surveys
- upper Pleistocene