Quaternary Coasts of the United States: Marine and Lacustrine Systems
Quaternary Coasts of the United States: Marine and Lacustrine Systems Project #274 Quaternary Coastal Evolution - This Special Publication represents the major cumulative contribution of the Working Group of the United States of America to IGCP Project 274. The primary aims of Project 274 are to: (1) document and explain local to global variations in coastal and continental-shelf evolution, incorporating knowledge of coastal and shelf processes and environment with geodynamic, climatic, oceanographic and other data to produce local and regional models, ranging from descriptive to numerical, leading to a better understanding of interactive forces responsible for past, present and future changes to the coasts of the world; and (2) promote specified thematic studies, which are necessary to solve problems of coastal change affecting human occupation of the coastal zone. The volume contains sections on Atlantic, Pacific, Gulf and Lacustrine shorelines, covering both Holocene and Pleistocene deposits, representing a summary of decades of research into coastal and continental-shelf evolution of North America.
Aminostratigraphy and Oxygen Isotope Stratigraphy of Marine-Terrace Deposits, Palos Verdes Hills and San Pedro Areas, Los Angeles County, California
-
Published:January 01, 1992
-
CiteCitation
Daniel R. Muhs, Gifford H. Miller, Joseph F. Whelan, George L. Kennedy, 1992. "Aminostratigraphy and Oxygen Isotope Stratigraphy of Marine-Terrace Deposits, Palos Verdes Hills and San Pedro Areas, Los Angeles County, California", Quaternary Coasts of the United States: Marine and Lacustrine Systems, Charles H. Fletcher, III, John F. Wehmiller
Download citation file:
- Share
Abstract
Amino-acid and oxygen isotope data for fossils from terraces of the Palos Verdes Hills and San Pedro areas in Los Angeles County, California, shed new light on the ages of terraces, sea-level history, marine paleotemperatures, and late Quaternary tectonics in this region. Low terraces on the Palos Verdes peninsula correlate with the ∼80-ka and ∼125-ka sea-level highstands that are also recorded as terraces on other coasts. In San Pedro, the Palos Verdes sand (the deposit on what is mapped as the first terrace by Woodring and others, 1946) was previously thought to be a single deposit; amino-acid, oxygen isotope, U-series, and fauna] data indicate that deposits of two ages, representing the 80-ka and 125-ka highstands occur within this unit. Oxygen isotope data show that on open, exposed parts of the Palos Verdes peninsula, ocean waters during the 125-ka highstand were cooler than present (by about 2.3-2.6°C) similar to what has been reported for other exposed coastal areas in California. In contrast, in the protected embayment environment around San Pedro, water temperatures during the 125-ka highstand were as warm or warmer than present. During the 80-ka highstand, water temperatures were significantly cooler than present even in the relatively protected embayment environment of the San Pedro area.
Late Quaternary tectonic-uplift rates can be calculated from terrace ages and elevations. Correlation of the lowest terraces around the Point Fermin area shows that the Cabrillo fault has a late Quaternary vertical-movement rate of 0.20 m/ka, based on the difference in uplift rates on the upthrown and downthrown sides of the fault. Elsewhere in the Palos Verdes Hills-San Pedro area, late Quaternary uplift rates vary from 0.32 m/ka to possibly as high as 0.72 m/ka. These rates, which reflect vertical movement on the Palos Verdes fault, are in broad agreement with estimated Holocene vertical rates of movement determined for offshore portions of the fault.