Controls on Upper Cretaceous (Maastrichtian) Heterozoan Carbonate Platforms Developed on Salt Diapirs, La Popa Basin, Ne Mexico
-
Published:January 01, 2008
-
CiteCitation
Katherine A. Giles, Dominic C. Druke, David W. Mercer, Lela Hunnicutt-Mack, 2008. "Controls on Upper Cretaceous (Maastrichtian) Heterozoan Carbonate Platforms Developed on Salt Diapirs, La Popa Basin, Ne Mexico", Controls on Carbonate Platform and Reef Development, Jeff Lukasik, J.A. (Toni) Simo
Download citation file:
- Share
-
Tools
Abstract
In the distal part of the Late Cretaceous Hidalgoan foreland basin in NE Mexico three isolated carbonate platforms nucleated on seafloor topography created by rising passive diapirs. Carbonate facies type and architecture of each platform was distinctly influenced by a combination of both short-term local conditions surrounding individual diapirs and by long-term regional conditions that affected the entire shelf. Local conditions included windward-leeward platform paleogeography, possible elevated nutrient levels at the salt- sediment interface, and halokinesis. Regional conditions included eustatic sea-level changes, foreland-basin tectonism, and siliciclastic sediment supply to the shelf.
Maastrichtian carbonate-platform facies are distributed asymmetrically across individual...
Figures & Tables
Contents
Controls on Carbonate Platform and Reef Development

Carbonate platforms and reefs emerge, grow and die in response to intrinsic and extrinsic mechanisms forced primarily by tectonics, oceanography, climate, ecology and eustasy. These mechanisms, or controls, create the physical, biological and chemical signals accountable for the myriad of carbonate depositional responses that, together, form the complex depositional systems present in the modern and ancient settings. If we are to fully comprehend these systems, it is critical to ascertain which controls ultimately govern the “life cycle” of carbonate platforms and reefs and understand how these signals are recorded and preserved. Deciphering which signals produce a dominant sedimentological response from the plethora of physical and biological information generated from superimposed regional to global-scale controls is critical to achieving this goal. With this understanding, it may be possible to extract common time- and space-independent depositional responses to specific mechanisms that may, ultimately, be used in a productive sense. Extensive research on a wide variety of carbonate platform and reefal systems in the past few decades has provided the foundation and understanding necessary to take carbonate research to a new level. With assistance from rapidly advancing computer software and an increasing use of cross-disciplinary integration, carbonate research is shifting from description and morphological analysis towards a science that is more focused on the assessment of process and genetic relationships. The aim of this special publication is to present a cross section of recent research that shows this evolution from a variety of perspectives and scales using examples distributed throughout the Phanerozoic.