Abstract

Recent significant discoveries of uranium mineralization in the southwestern Athabasca basin, northern Saskatchewan, Canada, have been associated with a series of geophysical conductors along a NE- to SW-trending structural zone, termed the Patterson Lake corridor. The Arrow deposit (indicated mineral resource: 256.6 Mlb U3O8; grade 4.03% U3O8) is along this trend, hosted exclusively in basement orthogneisses of the Taltson domain, and is the largest undeveloped uranium deposit in the basin. This study is the first detailed analysis of a deposit along this corridor and examines the relationships between the ductile framework and brittle reactivation of structures, mineral paragenesis, and uranium mineralization. Paragenetic information from hundreds of drill core samples and thin sections was integrated with structural analysis utilizing over 18,000 measurements of various structural features. The structural system at Arrow is interpreted as a partitioned, strike-slip–dominated, brittle-ductile fault system of complex Riedel-style geometry. The system developed along subvertical, NE- to SW-trending dextral high-strain zones formed syn- to post-D3 deformation, which were the focus of extensive premineralization metasomatism (quartz flooding, sericitization, chloritization), within the limb domain of a regional-scale fold structure. These zones evolved through post-Athabasca dextral and sinistral reactivation events, creating brittle fault linkages and dilation zones, allowing for hydrothermal fluid migration and resulting uraninite precipitation and associated alteration (white mica, chlorite, kaolinite, hematite, quartz veins). This study of the structural context of Arrow is important as it emphasizes that protracted reactivation of deep-seated structures and their subsidiaries was a fundamental control on uranium mineralization in the southwestern Athabasca basin.

You do not currently have access to this article.