Abstract

Concentrations of tourmaline in Early Proterozoic metasedimentary rocks of the Cuyuna iron range, east-central Minnesota, provide a basis for redefinition of the evolutionary history of the area. Manganiferous iron ore forms beds within the Early Proterozoic Trommald Formation, between thick-bedded granular iron-formation having shallow-water alepositional attributes and thin-bedded, nongranular iron-formation having deeper water attributes. These manganese-rich units were previously assumed to be sedimentary in origin. However, a reevaluation of drill core and mine samples from the Cuyuna North range has identified strata-bound tourmaline and tourmalinite, which has led to a rethinking of genetic models for the geology of the North range. We interpret the tourmaline-rich rocks of the area to be a product of submarine-hydrothermal solutions flowing along and beneath the sediment-seawater interface. This model for the depositional environment of the tourmaline is supported by previously reported mineral assemblages within the Trommald Formation that comprise aegirine; barium feldspar; manganese silicates, carbonates, and oxides; and Sr-rich barite veins.In many places, tourmaline-rich metasedimentary rocks and tourmalinites are associated locally with strata-bound sulfide deposits. At those localities, the tourmaline-rich strata are thought to be lateral equivalents of exhalative sulfide zones or genetically related subsea-floor replacements. On the basis of the occurrence of the tourmaline-rich rocks and tourmalinites, and on the associated minerals, we suggest that there is a previously unrecognized potential for sediment-hosted sulfide deposits in the Cuyuna North range.

First Page Preview

First page PDF preview
You do not currently have access to this article.