The lone granodiorite-hosted gold deposit at Dona sector of Jonnagiri, eastern Dharwar craton, India, contains typical shear-hosted and vein-hosted alteration zones. Pyrite is the dominant sulfide mineral in these alteration zones. Texturally three varieties of pyrites were identified in these alteration zones: (1) early pyrite-I is coarse to medium grained and subhedral shaped and contains near margin-parallel silicate inclusions, (2) main (ore)-stage pyrite-II overgrows early pyrite-I and also occurs as discrete grains invariably associated with visible gold, and (3) late-stage pyrite-III is anhedral and coarse grained and contains randomly oriented inclusions of silicates, sulfides, and native gold grains.

Electron microprobe analysis, coupled with X-ray element mapping and laser ablation-inductively coupled plasma-mass spectrometry, reveals that most early pyrites (pyrite-I) have higher concentrations of As and Au in both the zones. The shear-hosted main-stage pyrite-II can be divided into Ni-rich (median 211 ppm) pyrite-IIa and Co-rich (median 274 ppm) pyrite-IIb, respectively. While invisible gold content is higher in vein-hosted late-stage pyrite (pyrite-IIIa; ≤287 ppm) when compared to shear-hosted pyrites, native visible gold is associated with only vein-hosted main- and late-stage pyrites (pyrite-II and IIIa). Arsenic, Ni, Au, Se, Mo, and Te concentrations decrease from pyrite-I to pyrite-III, reflecting remobilization of trace elements during subsequent dissolution-reprecipitation of early formed pyrites. The oscillatory zoning of As, Co, and Ni and slight increase in Bi, Te, Se, Au, and Ag in pyrite-II and pyrite-IIIa represent pressure fluctuations and repeated local fluid phase separation in the ore-forming environment. A positive correlation of Au with Pb, Sb, Bi, and Te confirms the presence of nanoinclusions of mineral phases such as nagyagite, Pb-Sb-Bi tellurides, Au-Ag tellurides, tellurosulfides, and sulfosalts within pyrites, particularly in the vein-hosted zone.

Based on several lines of evidence, the following paragenetic sequence is proposed for pyrite formation at Dona, Jonnagiri. Rapid crystallization of early (porous) pyrite-I was followed by its dissolution during ~E-W–trending Sh1 shearing. Crystallization of main-stage pyrite-II and the late-stage pyrite-IIIa is the product of dissolution-reprecipitation of early pyrite during ~N-S–trending Sh2 shearing. Changing fluid compositions caused by episodic fault-valve actions and associated boiling resulted in dissolution-reprecipitation of early formed pyrites and remobilization of trace elements. This further resulted in precipitation of the bulk of gold within the inner vein-hosted zone during the later Sh2 shearing event. At the culmination of shearing, late-stage pyrite-IIIb precipitation occurs with very low concentrations of all trace elements, including gold.

You do not currently have access to this article.