The giant Cobre Panama porphyry Cu-Mo-Au-Ag deposit in western Panama is hosted by an undated andesitic volcanic sequence, the Petaquilla batholith (32.20 ± 0.76–28.28 ± 0.61 Ma), and porphyry stocks (28.96 ± 0.62–27.48 ± 0.68 Ma). Here we present a biostratigraphic age for the volcanic sequence based on stratigraphically diagnostic large foraminifera from thin limestone beds within kilometer-thick andesitic rocks. These yield a late middle to late Eocene biostratigraphic age (41.2–33.9 Ma), with a probable late Eocene age (Priabonian stage, 37.8–33.9 Ma), which is slightly older than the age of the batholith and porphyry intrusions. The volcanic sequence is dominated by fine-grained, massive basalt to andesite lavas with subordinate volcaniclastic deposits. A preliminary description of volcanic textures based on macroscopic observation of drill core and quarry/road exposures supports the occurrence of lavas, fallout tuffs, volcanic breccias, and possible pyroclastic density current deposits. Rare polymictic conglomerates with well-rounded clasts of igneous rocks attest to minor sedimentary reworking from a nearby subaerial volcanic environment. The dated limestone that is interbedded with the submarine volcanic sequence was deposited in an estimated water depth of 50 to 80 m, probably in a middle- to outer-shelf large foraminiferal shoal. These results support deposition on the flank of an active volcanic island during early shallowing of the Isthmus of Panama. The Cobre Panama volcanic center is interpreted to have formed in the final stages of the latest Cretaceous-Eocene volcanic arc before, or possibly during, the 175-km sinistral offset of the Panama volcanic front in the late Eocene-Oligocene. However, it remains unclear whether the volcanic center formed on the western continuation of the San Blas-Chagres arc segment or the eastern termination of the Azuero-Soná arc segment and whether it was emplaced during broadening of the pre-Oligocene volcanic front or in a back-arc setting.

You do not currently have access to this article.