The Upper Carboniferous Ortokarnash manganese ore deposit in the West Kunlun orogenic belt of the Xinjiang province in China is hosted in the Kalaatehe Formation. The latter is composed of three members: (1) the 1st Member is a volcanic breccia limestone, (2) the 2nd Member is a sandy limestone, and (3) the 3rd Member is a dark gray to black marlstone containing the manganese carbonate mineralization, which, in turn, is overlain by sandy and micritic limestone. This sequence represents a single transgression-regression cycle, with the manganese deposition occurring during the highstand systems tract. Geochemical features of the rare earth elements (REE+Y) in the Kalaatehe Formation suggest that both the manganese ore and associated rocks were generally deposited under an oxic water column with Post-Archean Australian Shale (PAAS)-normalized REE+Y patterns displaying characteristics of modern seawater (e.g., light REE depletion and negative Ce anomalies). The manganese ore is dominated by fine-grained rhodochrosite (MnCO3), dispersed in Mn-rich silicates (e.g., friedelite and chlorite), and trace quantities of alabandite (MnS) and pyrolusite (MnO2). The replacement of pyrolusite by rhodochrosite suggests that the initial manganese precipitates were Mn(IV)-oxides. Precipitation within an oxic water column is supported by shale-normalized REE+Y patterns from the carbonate ores that are characterized by large positive Ce (>3.0) anomalies, negative Y (~0.7) anomalies, low Y/Ho ratios (~20), and a lack of fractionation between the light and heavy rare earth elements ((Nd/Yb)PAAS ~0.9). The manganese carbonate ores are also 13C-depleted, further suggesting that the Mn(II) carbonates formed as a result of Mn(III/IV)-oxide reduction during burial diagenesis.

You do not currently have access to this article.