Jiaodong gold deposits are mainly sited along faulted contacts between Upper Jurassic Linglong granite and Precambrian basement metamorphic rocks or Lower Cretaceous Guojialing granite. Long-standing controversies relate to timing of gold mineralization and granite-gold relationships. In this study, gold-related muscovite consistently provides concordant 40Ar/39Ar plateau ages of 120 ± 2 Ma (2σ) for the Jiaojia, Sizhuang, and Luoshan deposits. Analogous 40Ar/39Ar timing constraints from gold-related muscovite are provided by total gas and high-temperature ages from Fushan, concordant high-temperature ages from Rushan, and fusion-step ages from Xiadian deposits. These new 40Ar/39Ar ages, when combined with previous reliable 40Ar/39Ar and U-Pb age constraints for mineralization, including ages of pre- and postgold dikes, define a widespread gold mineralization event at 120 ± 2 Ma (2σ). Published zircon U-Pb ages for Guojialing and Aishan granite magmatism suggest an ~8-m.y. lag between peak intrusive activity and gold mineralization. This, together with lack of both high-temperature alteration assemblages and alteration and/or metal zonation, indicates that the structurally controlled Jiaodong deposits are orogenic rather than intrusion-related deposits. Despite this, granite intrusions are considered to have provided suitable fluid trap sites. New 40Ar/39Ar analyses of biotite from the Linglong and Guojialing granites show they had cooled to about ~300° ± 50°C by ca. 123 to 124 Ma, providing pressure-temperature conditions similar to those under which most orogenic gold deposits formed close to the ductile-brittle transition. This enabled the effective ingress of fluids at supralithostatic pressures at 120 ± 2 Ma, leading to intensive brecciation, alteration, and deposition of both vein-type and disseminated gold ores. New zircon (U-Th)/He dates together with apatite fission-track data indicate that preservation of the gold province is due to slow postmineralization uplift and exhumation.

You do not currently have access to this article.