The Baguio district of the Philippines is one of the world’s premier mineral provinces, containing >35 million ounces (Moz) of gold and 2.7 million metric tons (Mt) of copper in epithermal, porphyry, and skarn deposits that formed in the last 3.5 m.y. Pliocene and Pleistocene magmatic rocks of the Baguio district that are spatially and temporally associated with mineralization can be broadly subdivided into an intermediate to felsic suite of mineralized low to medium K intrusions, some of which have adakitic affinities and a suite of mafic to intermediate, medium K to shoshonitic hornblende-phyric dikes. The geochemical and isotopic characteristics of the dikes are consistent with primitive mantle-derived melts that underwent minimal crustal contamination as they ascended through the arc crust. In contrast, the intermediate to felsic suite has been contaminated by young arc crust, suggesting ponding and fractionation within shallow-crustal magma chambers.

The Philippine arc has formed in a complex tectonic environment and is currently sandwiched between two active subduction zones. Eastward-directed subduction of the Scarborough Ridge along the Manila trench is currently associated with flattening of the downgoing slab. The formation of the Mafic dike complex is broadly coeval with the onset of subduction of the Scarborough Ridge and slab flattening. The extinct Scarborough Ridge would have been younger than the downgoing plate and consequently more susceptible to melting. These melts can account for the isotopic recharge of the Pliocene subarc mantle as well as the generation of the primitive melts and adakitic rocks found within the Baguio district. The interaction between primitive mafic melts and the more felsic calc-alkaline rocks has generated fertile melts that were highly productive for porphyry copper and epithermal gold mineralization.

You do not currently have access to this article.