A belt of unusual volcanogenic massive sulfide (VMS) occurrences is located along the eastern margin of the Alexander terrane throughout southeastern Alaska and northwestern British Columbia and exhibits a range of characteristics consistent with a variety of syngenetic to epigenetic deposit types. Deposits within this belt include Greens Creek and Windy Craggy, the economically most significant VMS deposit in Alaska and the largest in North America, respectively. The occurrences are hosted by a discontinuously exposed, 800-km-long belt of rocks that consist of a 200- to 800-m-thick sequence of conglomerate, limestone, marine clastic sedimentary rocks, and tuff intercalated with and overlain by a distinctive unit of mafic pyroclastic rocks and pillowed flows. Faunal data bracket the age of the host rocks between Anisian (Middle Triassic) and late Norian (late Late Triassic). This metallogenic belt is herein referred to as the Alexander Triassic metallogenic belt.

The VMS occurrences show systematic differences in degree of structural control, chemistry, and stratigraphic setting along the Alexander Triassic metallogenic belt that suggest important spatial or temporal changes in the tectonic environment of formation. At the southern end of the belt, felsic volcanic rocks overlain by shallow-water limestones characterize the lower part of the sequence. In the southern and middle portion of the belt, a distinctive pebble conglomerate marks the base of the section and is indicative of high-energy deposition in a near slope or basin margin setting. At the northern end of the belt the conglomerates, limestones, and felsic volcanic rocks are absent and the belt is composed of deep-water sedimentary and mafic volcanic rocks. This northward change in depositional environment and lithofacies is accompanied by a northward transition from epithermal-like structurally controlled, discontinuous, vein- and pod-shaped, Pb-Zn-AgBa-(Cu) occurrences with relatively simple mineralogy, to sulfosalt-enriched VMS occurrences exhibiting characteristics of vein, diagenetic replacement, and exhalative styles of mineralization, and finally to Cu-Zn-(Co-Au) occurrences with larger and more clearly stratiform orebody morphologies. Occurrences in the middle of the belt are transitional in nature between structurally controlled types of mineralization that formed in a shallow-water, near-arc setting, to those having a more stratiform appearance, formed in a deeper water, rift-basin setting. The geologic setting in the south is consistent with shallow subaqueous emplacement on the flanks of the Alexander terrane. Northward, the setting changes to an increasingly deeper back- or intra-arc rift basin.

Igneous activity in the Alexander Triassic metallogenic belt is characterized by a bimodal suite of volcanic rocks and a previously unrecognized association with mafic-ultramafic hypabyssal intrusions. Immobile trace and rare earth element (REE) geochemical data indicate that felsic rocks in the southern portion of the belt are typical calc-alkaline rhyolites, which give way in the middle of the belt to peralkaline rhyolites. Rhyolites are largely absent in the northern part of the belt. Throughout the belt, the capping basaltic rocks have transitional geochemical signatures. Radiogenic isotope data for these rocks are also transitional (basalts and gabbros: eNd = 4–9 and 87Sr/86Sr initial at 215 Ma = 0.7037–0.7074). Together these data are interpreted to reflect variable assimilation of mature island-arc crust by more primitive melts having the characteristics of either mid-ocean ridge (MORB) or intraplate (within-plate) basalts (WPB).

The ore and host-rock geochemistry and the sulfosalt-rich mineralogy of the deposits are strikingly similar to recent descriptions of active sea-floor hydrothermal (white smoker) systems in back arcs of the southwest Pacific Ocean. These data, in concert with existing faunal ages, record the formation of a belt of VMS deposits and occurrences in a propagating intra- to back-arc rift tectonic setting during the Late Triassic. A modern analogue having similar tectonic and metallogenic features is the southward projection of the Lau basin, from the active sea-floor hydrothermal vents of the Valu Fa Ridge to the Taupo volcanic zone of the North Island, New Zealand.

You do not currently have access to this article.